DOI QR코드

DOI QR Code

Yttrium-doped and Conductive Polymer-Coated High Nickel Layered Cathode Material with Enhanced Structural Stability

  • Shin, Ji-Woong (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Lee, Seon-Jin (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Nam, Yun-Chae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
  • 투고 : 2020.09.18
  • 심사 : 2021.01.26
  • 발행 : 2021.05.28

초록

In this study, high nickel layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries were modified by yttrium doping and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) coating. The effects of yttrium doping and PEDOT:PSS coating on the structural and electrochemical properties of the LiNi0.8Co0.1Mn0.1O2 cathode material were investigated and compared. The substitution of nickel with an electrochemically inert yttrium was confirmed to be successful in stabilizing the layered structure framework. Moreover, coating the surfaces of the LiNi0.8Co0.1Mn0.1O2 particles with a conductive polymer, PEDOT:PSS, improved the capacity retention, thermal stability, and impedance of the cathode material by increasing its ionic and electric conductivities.

키워드

과제정보

This study was supported by the granted financial resource from the Ministry of SMEs and Startups, Republic of Korea (S2928638) and the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT, No. 2019R1F1A1057220) and by the Technology Innovation Program (or Industrial Strategic Technology Development Program-Material Parts Technology Development Project) (20003747, Development of high-performance cathode material manufacturing technology through valuable metal upcycling from waste battery and waste cathode material) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and the Korea Agency for Infrastructure Technology.

참고문헌

  1. B. C. Jang and J. T. Son, J. Nanosci. Nanotechnol., 2016, 16(10), 10698-10701. https://doi.org/10.1166/jnn.2016.13221
  2. Y. G. Ptushinskii, Low Temp. Phys., 2004, 30(1), 1-26. https://doi.org/10.1063/1.1645151
  3. J. W. Shin and J. T. Son, J. New Mater. Electrochem. Syst., 2018, 21(2), 71-75. https://doi.org/10.14447/jnmes.v21i2.412
  4. Y. Wen, B. Wang, G. Zeng, K. Nogita, D.Ye and L. Wang, Chem Asian J., 2015, 10(3), 661-666. https://doi.org/10.1002/asia.201403134
  5. S . Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa and I. Nakai, Inorg. Chem., 2012, 51(11), 6211-6220. https://doi.org/10.1021/ic300357d
  6. H. Li, G. Chen, B. Zhang, J. Xiu, Solid Sate Commun., 2008, 146(3-4), 115-120. https://doi.org/10.1016/j.ssc.2008.02.006
  7. P.-Y. Liao, J.-G. Duh, H.-S. Sheu, J. Power Sources., 2008, 183(2), 766-770. https://doi.org/10.1016/j.jpowsour.2008.05.058
  8. C.Q. Xu, Y.W. Tian, Y.C. Zhai, L.Y. Liu, Mater. Chem. Phys., 2006, 98(2-3), 532-538. https://doi.org/10.1016/j.matchemphys.2005.09.089
  9. G.V. Subba Rao, B.V.R. Chowdari, H.J. Lindner, J. Power Sources., 2001, 97, 313-315.
  10. S. H. Ju, I. S. Kang, Y. S. Lee, W. K. Shin, S. Kim, K. Shin and D. W. Kim, ACS Appl Mater. & Interfaces, 2014, 6(4), 2546-2552. https://doi.org/10.1021/am404965p
  11. D. Lepage, C. Michot, G. Liang, M. Gauthier, Schougaard and S. B. Angew, Chem. Int. Ed., 2011, 50(30), 6884. https://doi.org/10.1002/anie.201101661
  12. L. Zhan, Z. Song, J. Zhang, J. Tang, H. Zhan, Y. Zhou and C. Zhan, Electrochim. Acta., 2008, 53(28), 8319-8323. https://doi.org/10.1016/j.electacta.2008.06.053
  13. Y. S. Lee, K. S. Lee, Y. K. Sun, Y. M. Lee and D. W. Kim, J. Power Sources., 2011, 196(16), 6997-7001. https://doi.org/10.1016/j.jpowsour.2010.10.047
  14. R.V. Mangalaraja, J. Mouzon, P. Hedstrom, I. Kero, K.V.S. Ramam, C.P. Camurri, M. Oden, J. Mater. Process. Technol., 2008, 208(1-3), 415-422. https://doi.org/10.1016/j.jmatprotec.2008.01.023
  15. J.A. Dean, Lange's Handbook of Chemistry, fifteenth ed., 1999.
  16. J.R. Reimers, E. Rossen, C.D. Jones, J.R. Dahn, Solid State Ionics., 1993, 61(4), 335-344. https://doi.org/10.1016/0167-2738(93)90401-N
  17. M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurback, U. Heider, L. Heider, J. Electrochem, Soc, 1999, 146, 1279. https://doi.org/10.1149/1.1391759
  18. G.Q. Liu, H.T. Kuo, R.S. Liu, C.H. Shen, D.S. Shy, X.K. Xing, J.M. Chen, J. Alloys Compd., 2010, 496(1-2), 512-516. https://doi.org/10.1016/j.jallcom.2010.02.091
  19. Q. Cao, H.P. Zhang, G.J. Wang, Q. Xia, Y.P. Wu, H.Q. Wu, Electrochem. Commun., 2007, 9(5), 1228-1232. https://doi.org/10.1016/j.elecom.2007.01.017
  20. A.J. Bard, L.R. Faulkner, Electrochemical Methods., 2001.
  21. G.-W. Yoo, T.-J. Park, J.-T. Son, J. New Mater. Electrochem. Syst., 2015, 18(1), 009-016. https://doi.org/10.14447/jnmes.v18i1.382