DOI QR코드

DOI QR Code

MULTIPLICATION FORMULA AND (w, q)-ALTERNATING POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF THE SECOND KIND

  • CHOI, JI EUN (Department of Education Innovation Center, Chungnam National University) ;
  • KIM, AHYUN (Department of Mathematics, Hannam University)
  • Received : 2020.11.10
  • Accepted : 2021.01.30
  • Published : 2021.05.30

Abstract

In this paper, we define twisted q-Euler polynomials of the second kind and explore some properties. We find generating function of twisted q-Euler polynomials of the second kind. Also, we investigate twisted q-Raabe's multiplication formula and (w, q)-alternating power sums of twisted q-Euler polynomials of the second kind. At the end, we define twisted q-Hurwitz's type Euler zeta function of the second kind.

Keywords

References

  1. R.P. Agarwal, J.Y. Kang, and C.S. Ryoo, A new q-extension of Euler polynomial of the second kind and some related polynomials, J. Computational Analysis and Applications 27 (2019), 136-148.
  2. C.K. An, H.Y. Lee, and Y.R. Kim, A note on the second kind q-Apostol Bernoulli numbers, polynomials, and zeta function, J. Nonlinear Sci. Appl. 12 (2019), 56-64. https://doi.org/10.22436/jnsa.012.01.06
  3. T.M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167. https://doi.org/10.2140/pjm.1951.1.161
  4. J.E. Choi and A.H. Kim, Some properties of twisted q-Bernoulli numbers and polynomials of the second kind, J. Appl. & Pure Math. 2 (2020), 89-97.
  5. C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 298 (2004), 210-224. https://doi.org/10.1016/j.jmaa.2004.05.040
  6. S. Kanemitsu, M. Katsurada, and M. Yoshimoto, On the Hurwitz-Lerch zeta-function, Aequationes Math. 59 (2000), 1-19. https://doi.org/10.1007/PL00000117
  7. A.H. Kim, Multiplication formula and (λ, q)-alternating series of (λ, q)-Genocchi polynomials of the second kind, J. Appl. & Pure Math. 1 (2019), 167-179.
  8. M.S. Kim and S. Hu, On p-adic Hurwitz-type Euler zeta functions, Journal of Number Theory 132 (2012), 2977-3015. https://doi.org/10.1016/j.jnt.2012.05.037
  9. T. Kim, Euler numbers and polynomials associated with zeta functions, Abstract and Applied Analysis 2008 (2008), 11 pages.
  10. D. Klusch, Asymptotic equalities for the Lipschitz-Lerch zeta-function, Arch. Math. 49 (1987), 38-43. https://doi.org/10.1007/BF01200226
  11. R. Lipschitz, Untersuchung der eigenschaften einer gattung von unendlichen reihen, Journal fur die reine und Angewandte Mathematik 105 (1889), 127-156. https://doi.org/10.1515/crll.1889.105.127
  12. M. Lerch, Note sur la fonction $\mathcal{R}(w,x,s)=\sum_{k=0}^{\infty}\frac{e^{2k{\pi}ix}}{(w+k)^2}$, Acta Math. 11 (1887), 19-24. https://doi.org/10.1007/BF02612318
  13. Q.M. Luo, Y. Zhou, Extension of the Genocchi polynomials and its q-analouge, Utilitas Mathematica 85 (2011), 281-297.
  14. L. Navas, F. Ruiz, and J.L. Varona, The Lerch transcendent from the point of view of Fourier analysis, J. Math. Anal. Appl. 431 (2015), 186-201. https://doi.org/10.1016/j.jmaa.2015.05.048
  15. C.S. Ryoo, Calculating zeros of the second kind Euler polynomials, Journal of Computational Analysis and Applications 12 (2010), 828-833.
  16. C.S. Ryoo, A iumerical Investigation of the structure of the roots of the second kind q-Euler polynomials, Journal of Computational Analysis and Applications 14 (2012), 321-327.
  17. C.S. Ryoo, Numerical computations of the distribution of the zeros of the second kind (h, q)-Euler Polynomials, J. Computational Analysis and Applications 15 (2013), 686-691.
  18. C.S. Ryoo, Explicit formulas on the second kind q-Euler numbers and polynomials, J. Computational Analysis and Applications 15 (2013), 1266-1271.