Acknowledgement
We wish to express our deepest gratitude to our colleagues, collaborators and friends, who have directly or indirectly contributed in the preparation process of this paper. We are also grateful to the Rector of COMSATS University Islamabad, Pakistan for the research facilities and support in our research endeavors.
References
- M. Adamek, On a problem connected with strongly convex functions, Math. Inequ. Appl. 19 (2016), 1287-1293.
- N.I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh, U.K., 1965.
- G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl. 9 (2018), 265-274.
- H. Angulo, J. Gimenez, A.M. Moeos and K. Nikodem, On strongly h-convex functions, Ann. Funct. Anal. 2 (2011), 85-91. https://doi.org/10.15352/afa/1399900197
- T. Antczak, On (p, r)-invex sets and functions, J. Math. Anal. Appl. 263 (2001), 355-379. https://doi.org/10.1006/jmaa.2001.7574
- M. Avriel, r-Convex functions, Math. Program 2 (1972), 309-323. https://doi.org/10.1007/bf01584551
- M.U. Awan, M.A. Noor and K.I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inform. Sci. 12 (2018), 405-409. https://doi.org/10.18576/amis/120215
- M.U. Awan, M.A. Noor, V.N. Mishra and K.I. Noor, Some characterizations of general preinvex functions, International J. Anal. Appl. 15 (2017), 46-56.
- M.U. Awan, M.A. Noor, M.E. Set and M. V. Mihai, On strongly (p, h)-convex functions, TWMS J. Pure Appl. Math. 10 (2019), 145-541.
- A. Azcar, J. Gimnez, K. Nikodem and J.L. Snchez, On strongly midconvex functions, Opuscula Math. 31 (2011), 15-26. https://doi.org/10.7494/OpMath.2011.31.1.15
- A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. https://doi.org/10.1017/S0334270000005142
- S.N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66. https://doi.org/10.1007/BF02592679
- W.L. Bynum, Weak parallelogram laws for Banach spaces, Can. Math. Bull. 19 (1976), 269-275. https://doi.org/10.4153/CMB-1976-042-4
- R. Cheng, C.B. Harris, Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl. 404 (2013), 64-70. https://doi.org/10.1016/j.jmaa.2013.02.064
- R. Cheng and W.T. Ross, Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung. 71 (2015), 45-58. https://doi.org/10.1007/s10998-014-0078-4
- M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
- M.V. Jovanovic, A note on strongly convex and strongly quasiconvex functions, Math. Notes 60 (1996), 778-779. https://doi.org/10.1007/BF02309176
- S. Karamardian, The nonlinear complementarity problems with applications, J. Optim. Theory Appl. 4 (1969), 167-181. https://doi.org/10.1007/BF00930577
- N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199. https://doi.org/10.1007/s00010-010-0043-0
- S.R. Mohan and S.K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908. https://doi.org/10.1006/jmaa.1995.1057
- C.P. Niculescu and L.E. Persson, Convex functions and their applications, Springer-Verlag, New York, 2006.
- K. Nikodem and Z.S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 1 (2011), 83-87.
- M.A. Noor, Some develoments in general variational inequalities, Appl. Math. Comput. 251 (2004), 199-277.
- M.A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330. https://doi.org/10.1080/02331939408843995
- M.A. Noor, Invex equilibrium problems, J. Math. Anal. Appl. 302 (2005), 463-475. https://doi.org/10.1016/j.jmaa.2004.08.014
- M.A. Noor, On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math. 5 (2004), Article 110.
- M.A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-566.
- M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007), 126-131.
- M.A. Noor, On Hadamard type inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math. 8 (2007), 1-14.
- M.A. Noor, Hadamard integral inequalities for productive of two preinvex functions, Nonl. Anal. Fourm 14 (2009), 167-173.
- M.A. Noor and K.I. Noor, On strongly generalized preinvex functions, J. Inequal. Pure Appl. Math. 6 (2005), 1-8.
- M.A. Noor and K.I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl. 316 (2006), 697-706. https://doi.org/10.1016/j.jmaa.2005.05.014
- M.A. Noor and K.I. Noor, Generalized preinvex functions and their properties, J. Appl. Math. Stoch. Anal. 2006 (2006), 1-14.
- M.A. Noor and K.I. Noor, Exponentially convex functions, J. Orisa Math. Soc. 38 (2019), 33-51.
- M.A. Noor and K.I. Noor, Strongly exponentially convex functions, U.P.B. Bull Sci. Appl. Math. Series A. 81 (2019), 75-84.
- M.A. Noor and K.I. Noor, Strongly exponentially convex functions and their properties, J. Advanc. Math. Studies 9 (2019), 180-188.
- M.A. Noor and K.I. Noor, On generalized strongly convex functions involving bifunction, Appl. Math. Inform. Sci. 13 (2019), 411-416. https://doi.org/10.18576/amis/130313
- M.A. Noor and K.I. Noor, Some properties of exponentially preinvex functions, FACTA Universitat(NIS). Ser. Math. Inform. 34 (2019), 941-955 . https://doi.org/10.22190/FUMI1905941N
- M.A. Noor and K.I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math. 4 (2019), 1554-1568. https://doi.org/10.3934/math.2019.6.1554
- M.A. Noor and K.I. Noor, New classes of preinvex functions and variational-like inequalities, Filomat 35 (2021), accepted.
- M.A. Noor and K.I. Noor, Higher order general convex functions and general variational inequalities, Canad. J. Appl. Math. 3 (2021), 1-17.
- M.A. Noor, K.I. Noor and M.U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269 (2015), 242-251. https://doi.org/10.1016/j.amc.2015.07.078
- M.A.Noor, K.I. Noor, M.U. Awan and J. Li, On Hermite-Hadamard inequalities for hpreinvex functions, Filomat 28 (2014), 463-1474. https://doi.org/10.2298/FIL1403463Z
- M.A. Noor, K.I. Noor and S. Iftikhar, Integral inequaliies for differentiable harmonic preinvex functions, TWMS J. Pur. Appl. Math. 7 (2016), 3-19.
- M.A. Noor, K.I. Noor and M.T. Rassias, New trends in general variational inequalities, Acta Appl. Mathematica 170 (2020), 981-1046. https://doi.org/10.1007/s10440-020-00366-2
- M.A. Noor, K.I. Noor, S. Iftikhar and F. Safdar, Some properties of generalized strongly harmonic convex functions, Inter. J. Anal. Appl. 16 (2018), 427-436.
- S. Pal and T.K. Wong, On exponentially concave functions and a new information geometry, Annals. Prob. 46 (2018), 1070-1113.
- J. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1992.
- J. Pecaric, C.E.M. Pearce and V. Simic, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl. 220 (1998), 99-109. https://doi.org/10.1006/jmaa.1997.5822
- J. Pecaric and J. Jaksetic, On exponential onvexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti 17 (2013), 81-94.
- B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 2-75.
- G. Qu and N. Li, On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Letters 3 (2019), 43-48. https://doi.org/10.1109/lcsys.2018.2851375
- G. Ruiz-Garzion, R. Osuna-Gomez and A. Rufian-Lizan, Generalized invex monotonicity, European J. Oper. Research 144 (2003), 501-512. https://doi.org/10.1016/S0377-2217(01)00393-9
- T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl. 136 (1988), 29-38. https://doi.org/10.1016/0022-247x(88)90113-8
- H.-K. Xu, Inequalities in Banach spaces with applications, Nonl. Anal.Theory, Meth. Appl. 16 (1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
- X.M. Yang, Q. Yang and K.L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Research 164 (2005), 115-119. https://doi.org/10.1016/j.ejor.2003.11.017
- X.M. Yang, Q. Yang and K.L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl. 117 (2003), 607-625. https://doi.org/10.1023/A:1023953823177
- Y.X. Zhao, S.Y. Wang and L. Coladas Uria, Characterizations of r-convex functions, J. Optim. Theory Appl. 145 (2010), 186-195. https://doi.org/10.1007/s10957-009-9617-1
- D.L. Zu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726. https://doi.org/10.1137/S1052623494250415