DOI QR코드

DOI QR Code

HIGHER ORDER STRONGLY EXPONENTIALLY PREINVEX FUNCTIONS

  • Received : 2020.10.08
  • Accepted : 2021.01.18
  • Published : 2021.05.30

Abstract

In this paper, some new classes of the higher order strongly exponentially preinvex functions are introduced. New relationships among various concepts of higher order strongly exponentially preinvex functions are established. It is shown that the optimality conditions of differentiable higher order strongly exponentially preinvex functions can be characterized by exponentially variational-like inequalities. Parallelogram laws for Banach spaces are obtained as an application. As special cases, one can obtain various new and known results from our results. Results obtained in this paper can be viewed as refinement and improvement of previously known results.

Keywords

Acknowledgement

We wish to express our deepest gratitude to our colleagues, collaborators and friends, who have directly or indirectly contributed in the preparation process of this paper. We are also grateful to the Rector of COMSATS University Islamabad, Pakistan for the research facilities and support in our research endeavors.

References

  1. M. Adamek, On a problem connected with strongly convex functions, Math. Inequ. Appl. 19 (2016), 1287-1293.
  2. N.I. Akhiezer, The classical moment problem and some related questions in analysis, Oliver and Boyd, Edinburgh, U.K., 1965.
  3. G. Alirezaei and R. Mazhar, On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl. 9 (2018), 265-274.
  4. H. Angulo, J. Gimenez, A.M. Moeos and K. Nikodem, On strongly h-convex functions, Ann. Funct. Anal. 2 (2011), 85-91. https://doi.org/10.15352/afa/1399900197
  5. T. Antczak, On (p, r)-invex sets and functions, J. Math. Anal. Appl. 263 (2001), 355-379. https://doi.org/10.1006/jmaa.2001.7574
  6. M. Avriel, r-Convex functions, Math. Program 2 (1972), 309-323. https://doi.org/10.1007/bf01584551
  7. M.U. Awan, M.A. Noor and K.I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inform. Sci. 12 (2018), 405-409. https://doi.org/10.18576/amis/120215
  8. M.U. Awan, M.A. Noor, V.N. Mishra and K.I. Noor, Some characterizations of general preinvex functions, International J. Anal. Appl. 15 (2017), 46-56.
  9. M.U. Awan, M.A. Noor, M.E. Set and M. V. Mihai, On strongly (p, h)-convex functions, TWMS J. Pure Appl. Math. 10 (2019), 145-541.
  10. A. Azcar, J. Gimnez, K. Nikodem and J.L. Snchez, On strongly midconvex functions, Opuscula Math. 31 (2011), 15-26. https://doi.org/10.7494/OpMath.2011.31.1.15
  11. A. Ben-Isreal and B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B 28 (1986), 1-9. https://doi.org/10.1017/S0334270000005142
  12. S.N. Bernstein, Sur les fonctions absolument monotones, Acta Math. 52 (1929), 1-66. https://doi.org/10.1007/BF02592679
  13. W.L. Bynum, Weak parallelogram laws for Banach spaces, Can. Math. Bull. 19 (1976), 269-275. https://doi.org/10.4153/CMB-1976-042-4
  14. R. Cheng, C.B. Harris, Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl. 404 (2013), 64-70. https://doi.org/10.1016/j.jmaa.2013.02.064
  15. R. Cheng and W.T. Ross, Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung. 71 (2015), 45-58. https://doi.org/10.1007/s10998-014-0078-4
  16. M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981), 545-550. https://doi.org/10.1016/0022-247X(81)90123-2
  17. M.V. Jovanovic, A note on strongly convex and strongly quasiconvex functions, Math. Notes 60 (1996), 778-779. https://doi.org/10.1007/BF02309176
  18. S. Karamardian, The nonlinear complementarity problems with applications, J. Optim. Theory Appl. 4 (1969), 167-181. https://doi.org/10.1007/BF00930577
  19. N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193-199. https://doi.org/10.1007/s00010-010-0043-0
  20. S.R. Mohan and S.K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901-908. https://doi.org/10.1006/jmaa.1995.1057
  21. C.P. Niculescu and L.E. Persson, Convex functions and their applications, Springer-Verlag, New York, 2006.
  22. K. Nikodem and Z.S. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 1 (2011), 83-87.
  23. M.A. Noor, Some develoments in general variational inequalities, Appl. Math. Comput. 251 (2004), 199-277.
  24. M.A. Noor, Variational-like inequalities, Optimization 30 (1994), 323-330. https://doi.org/10.1080/02331939408843995
  25. M.A. Noor, Invex equilibrium problems, J. Math. Anal. Appl. 302 (2005), 463-475. https://doi.org/10.1016/j.jmaa.2004.08.014
  26. M.A. Noor, On generalized preinvex functions and monotonicities, J. Inequal. Pure Appl. Math. 5 (2004), Article 110.
  27. M.A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), 529-566.
  28. M.A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory 2 (2007), 126-131.
  29. M.A. Noor, On Hadamard type inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math. 8 (2007), 1-14.
  30. M.A. Noor, Hadamard integral inequalities for productive of two preinvex functions, Nonl. Anal. Fourm 14 (2009), 167-173.
  31. M.A. Noor and K.I. Noor, On strongly generalized preinvex functions, J. Inequal. Pure Appl. Math. 6 (2005), 1-8.
  32. M.A. Noor and K.I. Noor, Some characterization of strongly preinvex functions, J. Math. Anal. Appl. 316 (2006), 697-706. https://doi.org/10.1016/j.jmaa.2005.05.014
  33. M.A. Noor and K.I. Noor, Generalized preinvex functions and their properties, J. Appl. Math. Stoch. Anal. 2006 (2006), 1-14.
  34. M.A. Noor and K.I. Noor, Exponentially convex functions, J. Orisa Math. Soc. 38 (2019), 33-51.
  35. M.A. Noor and K.I. Noor, Strongly exponentially convex functions, U.P.B. Bull Sci. Appl. Math. Series A. 81 (2019), 75-84.
  36. M.A. Noor and K.I. Noor, Strongly exponentially convex functions and their properties, J. Advanc. Math. Studies 9 (2019), 180-188.
  37. M.A. Noor and K.I. Noor, On generalized strongly convex functions involving bifunction, Appl. Math. Inform. Sci. 13 (2019), 411-416. https://doi.org/10.18576/amis/130313
  38. M.A. Noor and K.I. Noor, Some properties of exponentially preinvex functions, FACTA Universitat(NIS). Ser. Math. Inform. 34 (2019), 941-955 . https://doi.org/10.22190/FUMI1905941N
  39. M.A. Noor and K.I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math. 4 (2019), 1554-1568. https://doi.org/10.3934/math.2019.6.1554
  40. M.A. Noor and K.I. Noor, New classes of preinvex functions and variational-like inequalities, Filomat 35 (2021), accepted.
  41. M.A. Noor and K.I. Noor, Higher order general convex functions and general variational inequalities, Canad. J. Appl. Math. 3 (2021), 1-17.
  42. M.A. Noor, K.I. Noor and M.U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput. 269 (2015), 242-251. https://doi.org/10.1016/j.amc.2015.07.078
  43. M.A.Noor, K.I. Noor, M.U. Awan and J. Li, On Hermite-Hadamard inequalities for hpreinvex functions, Filomat 28 (2014), 463-1474. https://doi.org/10.2298/FIL1403463Z
  44. M.A. Noor, K.I. Noor and S. Iftikhar, Integral inequaliies for differentiable harmonic preinvex functions, TWMS J. Pur. Appl. Math. 7 (2016), 3-19.
  45. M.A. Noor, K.I. Noor and M.T. Rassias, New trends in general variational inequalities, Acta Appl. Mathematica 170 (2020), 981-1046. https://doi.org/10.1007/s10440-020-00366-2
  46. M.A. Noor, K.I. Noor, S. Iftikhar and F. Safdar, Some properties of generalized strongly harmonic convex functions, Inter. J. Anal. Appl. 16 (2018), 427-436.
  47. S. Pal and T.K. Wong, On exponentially concave functions and a new information geometry, Annals. Prob. 46 (2018), 1070-1113.
  48. J. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1992.
  49. J. Pecaric, C.E.M. Pearce and V. Simic, Stolarsky means and Hadamard's inequality, J. Math. Anal. Appl. 220 (1998), 99-109. https://doi.org/10.1006/jmaa.1997.5822
  50. J. Pecaric and J. Jaksetic, On exponential onvexity, Euler-Radau expansions and stolarsky means, Rad Hrvat. Matematicke Znanosti 17 (2013), 81-94.
  51. B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 2-75.
  52. G. Qu and N. Li, On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Letters 3 (2019), 43-48. https://doi.org/10.1109/lcsys.2018.2851375
  53. G. Ruiz-Garzion, R. Osuna-Gomez and A. Rufian-Lizan, Generalized invex monotonicity, European J. Oper. Research 144 (2003), 501-512. https://doi.org/10.1016/S0377-2217(01)00393-9
  54. T. Weir and B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl. 136 (1988), 29-38. https://doi.org/10.1016/0022-247x(88)90113-8
  55. H.-K. Xu, Inequalities in Banach spaces with applications, Nonl. Anal.Theory, Meth. Appl. 16 (1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
  56. X.M. Yang, Q. Yang and K.L. Teo, Criteria for generalized invex monotonicities, European J. Oper. Research 164 (2005), 115-119. https://doi.org/10.1016/j.ejor.2003.11.017
  57. X.M. Yang, Q. Yang and K.L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl. 117 (2003), 607-625. https://doi.org/10.1023/A:1023953823177
  58. Y.X. Zhao, S.Y. Wang and L. Coladas Uria, Characterizations of r-convex functions, J. Optim. Theory Appl. 145 (2010), 186-195. https://doi.org/10.1007/s10957-009-9617-1
  59. D.L. Zu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726. https://doi.org/10.1137/S1052623494250415