DOI QR코드

DOI QR Code

Changes in antioxidant activity of Chrysanthemum indicum L. extract by Lactobacillus casei KCTC 3109

Lactobacillus casei KCTC 3109에 의한 감국 추출물의 항산화능의 변화

  • Lee, Ja-bok (L.FOUNDER INC.) ;
  • Choi, Jae Young (Dept. of Culinary Arts & Hotel Food Service-Major in Culinary Arts, Yeonsung University)
  • 이자복 ((주)엘파운더) ;
  • 최재영 (연성대학교 호텔외식조리과 호텔조리전공)
  • Received : 2021.03.28
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

The antioxidant activity of Chrysanthemum indicum L. extract (CIL) was investigated by fermenting lactic acid bacteria with the CIL from 64% and 80% ethanol extraction and measuring the total phenolic contents (TPC), flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power (RP), and linoleic acid auto-oxidation inhibitory activity. CIL was confirmed to inhibit bacterial auto-oxidation. TPC was increased in strains 3109 and 3237, while flavonoid decreased in all strains. DPPH was increased in strains 3074 and 3109 fermented with 64% CIL and all the strains with 80% CIL. RP was increased and linoleic acid auto-oxidation inhibitory activity decreased in all the strains fermented with 64% or 80% CIL. Among the 4 strains, strain 3109 had the highest DPPH and RP; thus, it was most effective in increasing CIL's antioxidant efficacy through the fermentation process.

유산균에 의한 감국 추출물(CIL)의 항산화능의 변화를 알아보기 위해 64%, 80% ethanol 로 추출한 농도별 CIL를 발효시켜 total phenolic contents (TPC), flavonoid, 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power (RP), linoleic acid 자동산화 저해활성의 변화를 확인해 보았다. TPC의 경우 3109, 3237에서 증가하였으며, flavonoid에서는 모든 균주에서 감소를 나타냈다. DPPH 측정에서는 64% CIL 발효 후 3074, 3109에서 증가하였으며, 80% CIL 발효에서는 모든 균주가 증가를 나타냈다. RP측정에서는 64%, 80% CIL에서 모든 균주에서 증가를 보였으며, linoleic acid 자동산화 저해활성에서는 모든 균주에서 감소를 나타냈다. 특히 3109 항산화능을 평가하는 DPPH와 RP 측정에서 다른 균주에 비해 전반적으로 높게 측정이 되었다. 결과적으로 4종의 유산균 중에서 3109가 발효과정을 통해서 CIL의 항산화 효능을 효과적으로 증대하는 것을 확인할 수 있었다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (119116-01).

References

  1. M. Niva. (2007). 'All foods affect health': Understandings of functional foods and healthy eating among health-oriented Finns. Appetite, 48(3), 384-393. DOI : 10.1016/j.appet.2006.10.006
  2. E. G. Mun, B. Kim, E. Y. Kim, H. J. Lee, Y. Kim, Y. Park & Y. S. Cha. (2018). Research trend in traditional fermented foods focused on health functional evaluation. J Korean Soc Food Sci Nutr, 47(4), 373-386. DOI : 10.3746/jkfn.2018.47.4.373
  3. K. Y. Park. (2012). Increased health functionality of fermented foods. Food Industry and Nutrition 17(1), 1-8.
  4. D. Shin & D. Jeong. (2015). Korean traditional fermented soybean products: Jang. Journal of Ethnic Foods, 2(1), 2-7. DOI : 10.1016/j.jef.2015.02.002
  5. S. Parekh, V. A. Vinci & R. J. Strobel. (2000). Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol, 54(3), 287-301. DOI : 10.1007/s002530000403
  6. S. R. Couto & M. A. Sanroman. (2006). Application of solid-state fermentation to food industry-a review. Journal of Food Engineering, 76(3), 291-302. DOI : 10.1016/j.jfoodeng.2005.05.022
  7. H. Y. Ahn, K. R. Park, Y. R. Kim, J. Y. Cha & Y. S. Cho. (2013). Chemical characteristics in fermented cordycepin-enriched Cordyceps militaris. Journal of Life Science, 23(8), 1032-1040. DOI : 10.5352/jls.2013.23.8.1032
  8. L. Aguirre, E. M. Hebert, M. S. Garro & G. S. de Giori. (2014). Proteolytic activity of Lactobacillus strains on soybean proteins. LWT-Food Science and Technology, 59(2), 780-785. DOI : 10.1016/j.lwt.2014.06.061
  9. K. R. Pandey, S. R. Naik & B. V. Vakil. (2015). Probiotics, prebiotics and synbiotics-a review. J Food Sci Technol, 52(12), 7577-7587. DOI : 10.1007/s13197-015-1921-1
  10. V. Lei, W. K. A. Amoa-Awua & L. Brimer. (1999). Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int J Food Microbiol, 53(2-3), 169-184. DOI : 10.1016/s0168-1605(99)00156-7
  11. D. O. Otieno, J. F. Ashton & N. P. Shah. (2006). Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Research International, 39(4), 394-407. DOI : 10.1016/j.foodres.2005.08.010
  12. S. Srivastava, D. Singh, S. Patel & M. R. Singh. (2017). Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol, 101, 502-517. DOI : 10.1016/j.ijbiomac.2017.03.100
  13. M. Antolovich, P. D. Prenzler, E. Patsalides, S. McDonald & K. Robards. (2002). Methods for testing antioxidant activity. Analyst, 127(1), 183-198. DOI : 10.1039/b009171p
  14. S. G. Lee. (2013). Quality control of Chrysanthemum species by simultaneous determination of phenolic compounds. Master's thesis, Chungang University, Seoul.
  15. H. G. Kim, J. H. Ko, Y. G. Lee, H. S. Pak, D. C. Kim, K. S. Son, Y. S. Baek, O. K. Kwon, H. K. Shin & N. I. Baek. (2016). Flavonoids from the flower of Chrysanthemum morifolium. J Appl Biol Chem, 59(4), 357-360. DOI : 10.3839/jabc.2016.060
  16. Y. Sato, S. Itagaki, T. Kurokawa, J. Ogura, M. Kobayashi, T. Hirano, M. Sugawara & K. Iseki. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm, 403(1-2), 136-138. DOI : 10.1016/j.ijpharm.2010.09.035
  17. H. J. Oh & C. S. Kim. (2007). Antioxidant and nitrite scavenging ability of fermented soybean foods (Chungkukjang, Doenjang). J Korean Soc Food Sci Nutr, 36(12), 1503-1510. DOI : 10.3746/jkfn.2007.36.12.1503
  18. J. Y. Choi, J. S. Lim, B. R. Sim & Y. H. Yang. (2020). Inhibitory effect of lactic acid bacteria-fermented Chrysanthemum indicum L. on adipocyte differentiation through hedgehog signaling. Journal of Life Science, 30(6), 532-541. DOI : 10.5352/JLS.2020.30.6.532
  19. V. Dewanto, X. Wu, K. K. Adom & R. H. Liu. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem, 50(10), 3010-3014. DOI : 10.1021/jf0115589
  20. M. Moreno, M. I. Isla, A. R. Sampietro & M. A. Vattuone. (2000). Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol, 71(1-2), 109-114. DOI : 10.1016/s0378-8741(99)00189-0.
  21. M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200. https://doi.org/10.1038/1811199a0
  22. M. Oyaizu. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315. DOI : 10.5264/eiyogakuzashi.44.307
  23. H. Haraguchi, K. Hashimoto & A. Yagi. (1992). Antioxidative substances in leaves of Polygonum hydropiper. J Agric Food Chem, 40, 1349-1351. DOI : 10.1021/jf00020a011
  24. C. A. Rice-Evans, N. J. Miller & G. Paganga. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4), 152-159. DOI : 10.1016/S1360-1385(97)01018-2
  25. N. B. Othman, D. Roblain, N. Chammen, P. Thonart & M. Hamdi. (2009). Antioxidant phenolic compounds loss during the fermentation of Chetoui olives. Food Chem, 116(3), 662-669. DOI : 10.1016/j.foodchem.2009.02.084
  26. M. S. Oliveira, E. P. Cipolatti, E. B. Furlong & L. S. Soares. (2012). Phenolic compounds and antioxidant activity in fermented rice (Oryza sativa) bran. Food Science and Technology (Campinas), 32(3), 531-537. DOI : 10.1590/s0101-20612012005000071
  27. J. I. Hong, H. J. Kim & J. Y. Kim. (2011). Factors affecting reactivity of various phenolic compounds with the Folin-Ciocalteu reagent. J Korean Soc Food Sci Nutr, 40(2), 205-213. DOI : 10.3746/jkfn.2011.40.2.205
  28. N. Rajapakse, E. Mendis, W. K. Jung, J. Y. Je & S. K. Kim. (2005). Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International, 38(2), 175-182. DOI : 10.1016/j.foodres.2004.10.002
  29. F. O. Adetuyi & T. A. Ibrahim. (2014). Effect of fermentation time on the phenolic, flavonoid and vitamin C contents and antioxidant activities of okra (Abelmoschus esculentus) seeds. Nigerian Food Journal, 32(2), 128-137. DOI : 10.1016/s0189-7241(15)30128-4
  30. N. S. Alrawaiq & A. Abdullah. (2014). A review of flavonoid quercetin metabolism bioactivity and antioxidant properties. Int J PharmTech Res, 6(3), 933-941.
  31. J. Chen, S. Liu, R. Ye, G. Cai, B. Ji & Y. Wu. (2013). Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: Purification and characterization. Journal of Functional Foods, 5(4), 1684-1692. DOI : 10.1016/j.jff.2013.07.013
  32. J. H. Yang, J. L. Mau, P. T. Ko & L. C. Huang. (2000). Antioxidant properties of fermented soybean broth. Food Chem, 71(2), 249-254. DOI : 10.1016/S0308-8146(00)00165-5
  33. L. L. S. Canabady-Rochelle, C. Harscoat-Schiavo, V. Kessler, A. Aymes, F. Fournier & J. M. Girardet. (2015). Determination of reducing power and metal chelating ability of antioxidant peptides: Revisited methods. Food Chem, 183, 129-135. DOI : 10.1016/j.foodchem.2015.02.147
  34. J. P. Cosgrove, D. F. Church & W. A. Pryor. (1987). The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids, 22(5), 299-304. DOI : 10.1007/BF02533996
  35. S. Maqsood, S. Benjakul, A. Abushelaibi & A. Alam. (2014). Phenolic compounds and plant phenolic extracts as natural antioxidants in prevention of lipid oxidation in seafood: A detailed review. Comprehensive Reviews in Food Science and Food Safety, 13(6), 1125-1140. DOI : 10.1111/1541-4337.12106
  36. P. F. Wang & R. L. Zheng. (1992). Inhibitions of the autoxidation of linoleic acid by flavonoids in micelles. Chem Phys Lipids, 63(1-2), 37-40. DOI : 10.1016/0009-3084(92)90019-l