References
- S. Nakamoto. (2008). Bitcoin: A peer-to-peer electronic cash system (Online). https://www.lopp.net/pdf/bitcoin.pdf
- K. Grobys, S. Ahmed & N. Sapkota. (2020). Technical trading rules in the cryptocurrency market. Finance Research Letters, 32, 101396, 1-7. DOI : 10.1016/j.frl.2019.101396
- D. F. Gerritsen, E. Bouri, E. Ramezanfar & D. Roubaud. (2020). The profitability of technical trading rules in the Bitcoin market. Finance Research Letters, 34, 1-10. DOI : 10.1016/j.frl.2019.08.011
- S. Corbet, V. Eraslan, B. Lucey & A. Sensoy. (2019). The effectiveness of technical trading rules in cryptocurrency markets. Finance Research Letters, 31, 32-37. DOI : 10.1016/j.frl.2019.04.027
- D. Aggarwal, S. Chandrasekaran & B. Annamalai. (2020). A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices. Journal of Behavioral and Experimental Finance, 27, 100335, 1-12. DOI : 10.1016/j.jbef.2020.100335
- M. Liu, G. Li, J. Li, X. Zhu & Y. Yao. (2020). Forecasting the price of Bitcoin using deep learning. Finance Research Letters, In press. DOI : 10.1016/j.frl.2020.101755
- S. Xiaolei, L. Mingxi & S. Zeqian. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 1-6. DOI : 10.1016/j.frl.2018.12.032
- M. Gang, B. Kim, M. Shin, U. Baek & M. Kim. (2020). LSTM-based prediction of Bitcoin price fluctuation using sentiment analysis. Proceedings of Symposium of the Korean Institute of Communications and Information Sciences, 561-562.
- D. Pant, P. Neupane, A. Poudel, A. Pokhrel & B. Lama. (2018). Recurrent neural network based Bitcoin price prediction by Twitter sentiment analysis. International Conference on Computing, Communication and Security. DOI : 10.1109/CCCS.2018.85886824
- Y. Ahn & D. Kim. (2020). Emotional trading in the cryptocurrency market. Finance Research Letters, in Press. DOI : 10.1016/j.frl.2020.101912
- S. W. Kim. (2021). Profitability of trading system for cryptocurrency. Journal of Digital Contents Society, 22(3), 555-562. DOI : 10.9728/dcs.2021.22.3.555
- M. Y. Day, P. Huang, Y. Cheng, Y. T. Lin & Y. Ni. (2021). Profitable day trading Bitcoin futures following continuous bullish (bearish) candlesticks. Applied Economics Letters, 28, In press. DOI : 10.1080/13504851.2021.1899115
- M. Latif, S. Arshad, M. Fatima & S. Farooq. (2011). Market efficiency, market anomalies, causes, evidences, and some behavioral aspects of market anomalies. Research Journal of Finance and Accounting, 2(9), 1-13.
- S. Corbet, B. Lucey & L. Yarovaya. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81-88. DOI : 10.1016/j.frl.2017.12.006
- E. T. Cheah & J. Fry. (2015). Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Economics Letters, 130, 32-36. DOI : 10.1016/j.econlet.2015.02.029
- Introduction to Bitcoin Reference Rate. https://www.cmegroup.com/education/courses/introduction-to-bitcoin/introduction-to-bitcoin-reference-rate.html
- W. Kim, J. Lee & K. Kang. (2020). The effects of the introduction of Bitcoin futures on the volatility of Bitcoin returns. Finance Research Letters, 33, 1-8, 101204. DOI : 10.1016/j.frl.2019.06.002
- H. Sebastiao & H. Godinho. (2020). Bitcoin futures: An effective tool for hedging cryptocurrencies. Finance Research Letters, 33, 1-6, 101230. DOI : 10.1016/j.frl.2019.07.003
- B. Kapar & J. Olmo. (2019). An analysis of price discovery between Bitcoin futures and spot markets. Economics Letters, 174, 62-64. DOI : 10.1016/j.econlet.2018.10.031
- E. Akyildirim, S. Corbet, P. Katsiampa, N. Kellard & A. Sensoy. (2020). The development of Bitcoin futures: Exploring the interactions between cryptocurrency derivatives. Finance Research Letters, 34, 1-9, 101234. DOI : 10.1016/j.frl.2019.07.007
- J. C. Hung, H. C. Liu & J. J. Yang. (2021). Trading activity and price discovery in Bitcoin futures markets. Journal of Empirical Finance, 62, 107-120. DOI : 10.1016/jjempfin.2021.03.001
- W. Brock, J. Lakonishok & B. LeBaron. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of Finance, 47(5), 1731-1764. DOI : 10.2307/2328994
- H. Bessembinder & K. Chan. (1995). The profitability of technical trading rules in the Asian stock markets. Pacific-Basin Finance Journal, 3(2-3), 257-284. DOI : 10.1016/0927-538x(95)0002-3
- A. Detzel, H. Liu, J. Strauss, G. Zhou & Y. Zhu. (2021). Learning and predictability via technical analysis: Evidence from Bitcoin and stocks with hard-to-value fundamentals. Financial Management, 50, 107-137. DOI : 10.1111/fima.12310
- E. Fama. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486
- I. Psaradellis, J. Laws, A. Pantelous & G. Sermpinis. (2019). Performance of technical trading rules: Evidence from the crude oil market. The European Journal of Finance, 25(17), 1793-1815. DOI : 10.1080/1351847x.2018.1552172
- S. Alexander. (1961). Price movements in speculative markets: Trends or random walks. Industrial Management Review, 2(2), 7-26.
- R. Sullivan, A. Timmermann & H. White. (1999). Data-snooping, technical trading rule performance and the Bootstrap. The Journal of Finance, 54(5), 1647-1691. DOI : 10.1111/0022-1082.00163
- A. Vo & C. Yost-Bremm. (2020). A high-frequency algorithmic trading strategy for cryptocurrency. Journal of Computer Information Systems, 60(6), 555-568. DOI : 10.1080/08874417.2018.1552090
- W. F. Sharpe. (1966). Mutual fund performance. The Journal of Business, 39(1), 119-138. https://doi.org/10.1086/294846
- F. A. Sortino & L. N. Price. (1994). Performance measurement in a downside risk framework. The Journal of Investing, 3(3), 59-64. DOI : 10.3905/joi.3.3.59
- C. Eom, T. Kaizoji & E. Scalas. (2019). Fat tails in financial return distributions revisited: Evidence from the Korean stock market. Physica A, 526, 121055, 51-10. DOI : 10.1016/j.physa.2019.121055