DOI QR코드

DOI QR Code

플랫폼 서비스 운용환경에서 빅데이터 플로우 관리를 통한 장애 상황 관리 방법

The Method of Failure Management through Big Data Flow Management in Platform Service Operation Environment

  • 백송기 (공주대학교 컴퓨터공학과) ;
  • 임재현 (공주대학교 컴퓨터공학과)
  • Baik, Song-Ki (Dept. of Computer Science & Engineering, Kongju National University) ;
  • Lim, Jae-Hyun (Dept. of Computer Science & Engineering, Kongju National University)
  • 투고 : 2021.04.05
  • 심사 : 2021.05.20
  • 발행 : 2021.05.28

초록

최근 글로벌 플랫폼 서비스사업자가 제공하는 플랫폼 서비스의 장애로 전 세계적으로 특정 콘텐츠 서비스가 불가한 상황이 발생하고, 글로벌 서비스 시장에 사회 경제적으로 상당히 큰 문제를 초래하고 있다. 플랫폼 서비스의 안정성 확보를 위해서는 지능화된 플랫폼 운용 관리가 요구된다. 또한, 플랫폼 장애를 사전에 예방하고 대응할 수 있는 지능형 관리 기술이 필요하다. 본 연구에서는 플랫폼 운용 환경에서 비정상적인 서비스 상태 및 장애를 신속하게 감지 대응하기 위한 플랫폼 빅데이터 플로우 관리 기법 및 관리 모듈 구현 방안을 제안하였다. 서비스 및 장애 상황 감시 특성 분석 결과 빅데이터 플로우 관리 기법이 장애 감시 측면에서 전통적인 네트워크 관리 방법에 비하여 비정상적인 장애 상황 감지 및 장애 대응 특성이 30%이상 개선됨을 확인하였다. 빅데이터 플로우 관리 방법의 경우 플랫폼 시스템 장애 및 비정상적인 서비스 상태를 신속하게 감지할 수 있는 장점이 있으며 AI 기반 기술과 연계시 플랫폼 관리를 지능적으로 수행하고 장애 예방보전 능력은 크게 향상될 수 있을 것으로 기대된다.

Recently, a situation in which a specific content service is impossible worldwide has occurred due to a failure of the platform service and a significant social and economic problem has been caused in the global service market. In order to secure the stability of platform services, intelligent platform operation management is required. In this study, big data flow management(BDFM) and implementation method were proposed to quickly detect to abnormal service status in the platform operation environment. As a result of analyzing, BDFM technique improved the characteristics of abnormal failure detection by more than 30% compared to the traditional NMS. The big data flow management method has the advantage of being able to quickly detect platform system failures and abnormal service conditions, and it is expected that when connected with AI-based technology, platform management is performed intelligently and the ability to prevent and preserve failures can be greatly improved.

키워드

참고문헌

  1. IRISco Ltd. (2020). Intelligent Big Data Analysis Platform, Daejeon : IITP.
  2. D. Dam. (2020). What is Platform,Know Platform Business and Platform Type. MBA study note (Online). https://mbanote2.histpry.com
  3. J. Woo. (2019).Platform Business Understanding . Brunch Book. (Online). https://brunch.co.kr
  4. J. H. Kwak, J. U. Choi, E. K. Byun & S. W. Kim. (2020). Development of Big Data Platform Operation and Management System Considering HPC Environments. Journal of KIISE, 47(3), 240-246. DOI : 10.5626/JOK.2020.47.3.240
  5. S. I. Na & H. J. Kim (2018). Design of Anomaly Detection System Based on Big Data in Internet of Things. Journal of Digital Contents Society, 19(2), 377-383. https://doi.org/10.9728/DCS.2018.19.2.377
  6. K. Takeshita & Y. Soejima. (2020, September). An Evaluation of Network Service Monitoring Method Using User Traffic Information. IEEE, (pp. 144-149). Daegu : Korea(South)
  7. S. J. Kim. (2019). IoT Data Optimization, Time Series Database Emergence. DATANET (Online) http://www.datanet.co.kr
  8. Z. Corp. (2021). Basics of Network Monitoring(OpManager). ManageEngine (Online). https://www.manageengine.com
  9. J. H. Kang. (2019). IP-Based Heterogeneous Network Interface Gateway for IoT Big Data Collection. Journal of the Korea Institute of Information and Communication Engineering, 23(2), 173-178. https://doi.org/10.6109/JKIICE.2019.23.2.173
  10. C. H. Choi. (2020). MIT, Open of TadGAN' algorithm source based on deep learning that detects anomalies in time series data. Artificial Intelligence Times. (Online). https://www.aitimes.kr
  11. Y. H. Bak. Y. E. Lee & D. J. Kim. (2020 August). A study on the Implementation Measures of ICT Standardization Platform. KICS Summer Conference(pp. 802-803). Jeju : Korea.
  12. M. Muneeb & M. K. Kwang. (2019, December). A Study on IoT-based Intelligent Data Analytics in Edge-Fog Computing Platform. KIISE Conference, (pp. 188-190). Pyeongchang : Gangwon.
  13. J. S. Han & I.H. Joe. (2021, Feburary). Performance Comparison of Anomaly Detection Model for IoT Time Series Data. KICS Winter Conference, (pp. 1,062-1,063). Yong Pyong : Gangwon.
  14. J. Y. Park, D. H. Seo, B. C. Choi & H. W. Nam. (2021 February). Comparison and Analysis of Time Series Data Classification Algorithm Performance. KICS Winter Conference, (pp. 111-112). Yong Pyong : Kangwon.
  15. H. H. Kim, J. H. Kang & C. S. Chae. (2020, December). Functional block S/W design for analysis of time series data. KICS Conference, (pp 369-370). Yong Pyong : Gangwon.
  16. J. W. Jang, H. S. Kim, M. K. Kim, S. A. Lee & J. H. Kim. (2018). Design of Storage Structure for Big Data Based Integrated Traffic Analysis Platform. Proceedings of Symposium of Korea Information Science Society. (pp. 216-218), Pyeongchang : Gangwon.
  17. T. H. Khan, K. Abbass, A. Rafique, A. Muhammad & W. C. Song. (2020, September). Generic Intent-based Networking Platform for E2E Network Slice Orchestration & Lifecycle Management. KICS APNOMS 2020, (pp. 49-54), Yong Pyong : Gangwon.