과제정보
This work was supported by 2021 (21-center-2) research fund of Korea Military Academy (Cyber Warfare Research Center).
참고문헌
- P. Zhao & S. C. Hoi. (2013, August). Cost-sensitive online active learning with application to malicious URL detection. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 919-927). DOI : 10.1145/2487575.2487647
- F. Yu. (2015). Malicious url detection algorithm based on bm pattern matching. International Journal of Security and Its Applications, 9(9), 33-44. https://doi.org/10.14257/ijsia.2015.9.9.04
- J. Klensin. (2003). Role of the domain name system (dns). Internet Request for Comments: RFC, 3467.
- M. Anthony & P. L. Bartlett. (2009). Neural network learning: Theoretical foundations. cambridge university press.
- S. Yadav, A. K. K. Reddy, A. N. Reddy & S. Ranjan. (2012). Detecting algorithmically generated domain-flux attacks with DNS traffic analysis. IEEE/Acm Transactions on Networking, 20(5), 1663-1677. DOI : 10.1109/TNET.2012.2184552
- L. Dolberg, J. Francois & T. Engel. (2012). Efficient multidimensional aggregation for large scale monitoring. In 26th Large Installation System Administration Conference ({LISA} 12) (pp. 163-180).
- Y. Shi, G. Chen & J. Li. (2018). Malicious domain name detection based on extreme machine learning. Neural Processing Letters, 48(3), 1347-1357. DOI : 10.1007/s11063-017-9666-7
- X. Sun, M. Tong, J. Yang, L. Xinran & L. Heng. (2019). Hindom: A robust malicious domain detection system based on heterogeneous information network with transductive classification. In 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019) (pp. 399-412).
- L. Bilge, S. Sen, D. Balzarotti, E. Kirda & C. Kruegel. (2014). Exposure: A passive dns analysis service to detect and report malicious domains. ACM Transactions on Information and System Security (TISSEC), 16(4), 1-28. DOI : 10.1145/2584679
- B. Rahbarinia, R. Perdisci & M. Antonakakis. (2016). Efficient and accurate behavior-based tracking of malware-control domains in large ISP networks. ACM Transactions on Privacy and Security (TOPS), 19(2), 1-31. DOI : 10.1145/2960409
- J. Yuan, G. Chen, S. Tian & X. Pei. (2021). Malicious URL Detection Based on a Parallel Neural Joint Model. IEEE Access, 9, 9464-9472. DOI : 10.1109/ACCESS.2021.3049625.
- R. Patgiri, A. Biswas & S. Nayak. (2021). deepBF: Malicious URL detection using Learned Bloom Filter and Evolutionary Deep Learning. arXiv preprint arXiv:2103.12544.
- B. M. Kim, Y. W. Han, G. Y. Kim, Y. B. Kim & H. J. Kim. (2020). Development of Rule-Based Malicious URL Detection Library Considering User Experiences. Journal of the Korea Institute of Information Security & Cryptology, 30(3), 481-491. DOI : 10.13089/JKIISC.2020.30.3.481
- D. F. Specht. (1990). Probabilistic neural networks. Neural networks, 3(1), 109-118. https://doi.org/10.1016/0893-6080(90)90049-Q
- D. M. Kline & V. L. Berardi. (2005). Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Computing & Applications, 14(4), 310-318. DOI : 10.1007/s00521-005-0467-y
- S. Du et al. (2019, May). Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning (pp. 1675-1685). PMLR.
- M. Abadi et al. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16) (pp. 265-283).
- https://www.alexa.com
- https://gnso.icann.org
- N. Hason, A. Dvir & C. Hajaj. (2020, July). Robust Malicious Domain Detection. In International Symposium on Cyber Security Cryptography and Machine Learning (pp. 45-61). Springer, Cham. DOI : 10.1007/978-3-030-49785-9_4
- D. P. Kingma & J. Ba. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- L. Bottou. (2010). Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD. DOI : 10.1007/978-3-7908-2604-3_16
- A. Creswell et al. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1), 53-65. DOI : 10.1109/MSP.2017.2765202
- E. Kodirov, T. Xiang & S. Gong. (2017). Semantic autoencoder for zero-shot learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3174-3183).
- H. Kwon, H. Yoon & D. Choi. (2019). Restricted evasion attack: Generation of restricted-area adversarial example. IEEE Access, 7, 60908-60919. DOI : 10.1109/ACCESS.2019.2915971
- H. Kwon, Y. Kim, H. Yoon & D. Choi. (2018). Random untargeted adversarial example on deep neural network. Symmetry, 10(12), 738. DOI : 10.3390/sym10120738
- H. Kwon, H. Yoon & K. W. Park. (2019, November). POSTER: Detecting audio adversarial example through audio modification. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (pp. 2521-2523). DOI : 10.1145/3319535.3363246
- H. Kwon, Y. Kim, K. W. Park, H. Yoon & D. Choi. (2018). Advanced ensemble adversarial example on unknown deep neural network classifiers. IEICE TRANSACTIONS on Information and Systems, 101(10), 2485-2500. DOI : 10.1587/transinf.2018EDP7073
- H. Kwon, H. Yoon & K. W. Park. (2020). Acoustic-decoy: Detection of adversarial examples through audio modification on speech recognition system. Neurocomputing, 417, 357-370. DOI : 10.1016/j.neucom.2020.07.101