DOI QR코드

DOI QR Code

Comparison of Microscopy and Pigment Analysis for Determination of Phytoplankton Community Composition: Application of CHEMTAX Program

식물플랑크톤 군집조성 파악을 위한 현미경관찰법과 지표색소분석법 비교 연구: CHEMTAX 프로그램 활용

  • Kim, Dokyun (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Choi, Jisoo (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Choi, Kwangsoon (K-water Research Institute) ;
  • Shin, Kyung-Hoon (Department of Marine Sciences and Convergent Technology, Hanyang University)
  • 김도균 (한양대학교 해양융합공학과) ;
  • 최지수 (한양대학교 해양융합공학과) ;
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 장광현 (경희대학교 환경학및환경공학과) ;
  • 최광순 (한국수자원공사 K-water연구원) ;
  • 신경훈 (한양대학교 해양융합공학과)
  • Received : 2021.12.06
  • Accepted : 2021.12.20
  • Published : 2021.12.31

Abstract

To understand how to efficiently observe the biomass and community of phytoplankton, phytoplankton sampling was carried out from June to October 2019 at the Yeongju dam sediment control reservoir(YJ) and Bohyeonsan dam reservoir(BH1 and BH2). The results derived from microscopic observation, such as the conventional phytoplankton qualitative/quantitative analysis, and from the CHEMTAX method based on the pigments, were compared. The relative contribution of phytoplankton, calculated by the microscopy and CHEMTAX methods, showed a significant difference in all four classes: cryptophyta, chlorophyta, cyanobacteria, and diatoms. In addition, the correlation between the two observation methods was poor. This might be caused by methodological differences in microscopy that do not consider the varying cell sizes among phytoplankton species. In this study, by converting the cells into carbon, the slope between both carbon biomasses based on microscopy and CHEMTAX was improved close to the 1 : 1 line, and the y-intercept was closer to 0 for cryptophyta and diatoms. For cyanobacteria, the slope increased, the y-intercept decreased, and the plot approached 1 : 1 although the correlation coefficients were not improved in all classes. The present study suggests that application of CHEMTAX based on pigment analysis could be a possible approach to efficiently determine the relative carbon proportions of individual classes of phytoplankton community composition.

본 연구는 여름철 식물플랑크톤의 생체량 및 군집 조성변화를 파악하기 위해 2019년 6월부터 10월까지 총 9회에 걸쳐 영주댐 유사조절지(YJ)와 보현산 댐저수지(BH1 and BH2)에서 식물플랑크톤 채집을 수행하였다. 또한, 전통적인 식물플랑크톤 정성/정량 방법인 현미경관찰법과 식물플랑크톤의 지표색소 기반인 CHEMTAX법으로 도출된 결과를 비교 분석하였다. 분석된 네 강(class) 수준의 은편모조류, 녹조류, 남조류, 규조류는 두 관찰법으로 산출한 결과에서 모두 유의한 차이를 나타내었으며, 서로간의 상관관계 또한 좋지 않았다. 이는 세포 크기가 고려되지 않은 현미경관찰법과 지표색소의 Chl.a 상대비를 기반으로 하는 CHEMTAX법의 방법론 차이에서 유발되었을 가능성이 있다. 따라서 탄소 함량으로 생체량을 변환하여 CHEMTAX법과 비교한 결과 은편모조류와 규조류는 회귀선의 기울기가 약 1로 1 : 1 line에 상당히 가까운 수준을 보였으며, y 절편은 0에 더욱 가까워졌다. 남조류 역시 기울기가 증가하였고, y 절편은 감소하였으며, raw data 중 1 : 1 line에 가까운 plot이 증가하였다. 녹조류는 음의 상관관계였던 전자와 비교하였을 때, 기울기가 양의 값으로 변하였다. 하지만, 모든 군집에서 결정계수가 감소한 것은 각 군집의 우점종의 전체 셀 수를 탄소량으로 환산하는 과정에서 군집별 종 조성에 따라 기여율 분포의 분산이 커진 것이 주요 원인 중 하나로 보인다. 따라서 두 방법의 상관관계를 높이기 위해서는 각 군집의 종별 세포 크기를 측정하여 더욱 세부적인 탄소 환산이 이루어져야 할 것이다. 지금까지 현미경관찰법과 CHEMTAX법의 결과를 비교하여 두 방법의 단점은 보완하고, 효율성을 극대화시키기 위한 노력이 진행되어 왔으나 서로의 차이를 설명하기에는 한계가 있었다. 본 연구에서는 색소 분석에 기반한 CHEMTAX 프로그램을 활용함으로써 식물플랑크톤 군집의 상대 탄소 비율을 효율적이고 신속하게 파악하는 방법을 제안하였다.

Keywords

Acknowledgement

본 결과물은 수자원공사 용역과제 [댐저수지에서 조류의 1차생산력 및 영양염류 이용율 분석 연구(2019)]의 지원을 받아 연구되었습니다.

References

  1. Andersen, R.A., R.R. Bidigare, M.D. Keller and M. Latasa. 1996. A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Research Part II: Topical Studies in Oceanography 43(2-3): 517-537. https://doi.org/10.1016/0967-0645(95)00095-X
  2. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257-263. https://doi.org/10.3354/meps010257
  3. Bowles, N.D., H.W. Paerl and J. Tucker. 1985. Effective solvents and extraction periods employed in phytoplankton carotenoid and chlorophyll determinations. Canadian Journal of Fisheries and Aquatic Sciences 42(6): 1127-1131. https://doi.org/10.1139/f85-139
  4. Choi, J., J.O. Min, B. Choi, D. Kim, J.J. Kang, S.H. Lee and K.H. Shin. 2020. Key Factors Controlling Primary Production and Cyanobacterial Harmful Algal Blooms (cHABs) in a Continuous Weir System in the Nakdong River, Korea. Sustainability 12(15): 6224. https://doi.org/10.3390/su12156224
  5. Choi, J., J.O. Min, B. Choi, J.J. Kang, K. Choi, S.H. Lee and K.H. Shin. 2019. Variation of primary productivity and phytoplankton community in the weirs of mid and downstream of the Nakdong River during fall and Early winter: Application of phytoplankton pigments and CHEMTAX. Korean Journal of Ecology and Environment 52(2): 81-93. https://doi.org/10.11614/KSL.2019.52.2.081
  6. El Herry, S., H. Nasri and N. Bouaicha. 2009. Morphological characteristics and phylogenetic analyses of unusual morphospecies of Microcystis novacekii forming bloom in the Cheffia Dam (Algeria). Journal of Limnology 68(2): 242. https://doi.org/10.4081/jlimnol.2009.242
  7. Finkel, Z.V., J. Beardall, K.J. Flynn, A. Quigg, T.A. V. Rees and J.A. Raven. 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32(1): 119-137. https://doi.org/10.1093/plankt/fbp098
  8. Gieskes, W.W. and G.W. Kraay. 1983. Unknown chlorophyll a derivatives in the North Sea and the tropical Atlantic Ocean revealed by HPLC analysis 1. Limnology and Oceanography 28(4): 757-766. https://doi.org/10.4319/lo.1983.28.4.0757
  9. Goericke, R. and J.P. Montoya. 1998. Estimating the contribution of microalgal taxa to chlorophyll a in the field--variations of pigment ratios under nutrient-and light-limited growth. Marine Ecology Progress Series 169: 97-112. https://doi.org/10.3354/meps169097
  10. Ha, S.Y., S.W. Kang, M.O. Park, Y.N. Kim, S.H. Kang, K.H. Shin. 2010. Photoinduction of UV-absorbing compounds and photo-protective pigment in Phaeocystis pouchetii and Porosira glacialis by UV exposure. Ocean and Polar Research 32(4): 397-409. https://doi.org/10.4217/OPR.2010.32.4.397
  11. Havskum, H., L. Schluter, R. Scharek, E. Berdalet, S. Jacquet. 2004. Routine quantification of phytoplankton groups microscopy or pigment analyses?. Marine Ecology Progress Series 273: 31-42. https://doi.org/10.3354/meps273031
  12. Hillebrand, H., C.D. Durselen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35(2): 403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x
  13. Holm-Hansen, O., C.J. Lorenzen, R.W. Holmes and J. D. Strickland. 1965. Fluorometric determination of chlorophyll. ICES Journal of Marine Science 30(1): 3-15. https://doi.org/10.1093/icesjms/30.1.3
  14. Jeffrey, S.W. 1997. Introduction to marine phytoplankton and their pigment signatures. Phytoplankton pigment in oceanography, p. 37-84. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods(Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright, eds.). UNESCO, Paris.
  15. Jeffrey, S.W., R.F.C. Mantoura and S.W. Wright. 1997. Phytoplankton Pigments in Oceanography(Jeffrey, S.W. et al., eds.). UNESCO Publishing, Paris.
  16. Karl, D.M. 1999. A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. Ecosystems 2(3): 181-214. https://doi.org/10.1007/s100219900068
  17. Lagerheim, G. 1882. Bidrag till kannedomen om stockholmstraktens Pediastreer, Protococcaceer och Palmellaceer. Ofversigt af Kongl. Vetenskaps-Akademiens Forhandlingar Arg 39(2): 47-81.
  18. Latasa, M. and E. Berdalet. 1994. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp. Journal of Plankton Research 16(1): 83-94. https://doi.org/10.1093/plankt/16.1.83
  19. Lee, E., M. Son, J.B. Kim, W.C. Lee, G.E. Jeon and S.H. Lee. 2018. A study of variation characteristics of the phytoplankton community by UPLC located in the Jinju Bay, Korea. Korean Journal of Environmental Biology 36(1): 62-72. https://doi.org/10.11626/KJEB.2018.36.1.062
  20. Lee, Y.W. and G. Kim. 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea of Korea using a Ra tracer. Estuarine, Coastal and Shelf Science 71(1-2): 309-317. https://doi.org/10.1016/j.ecss.2006.08.004
  21. Lee, Y.W., G. Kim, W.A. Lim and D.W. Hwang. 2010. A relationship between submarine groundwater borne nutrients traced by Ra isotopes and the intensity of dinoflagellate red-tides occurring in the southern sea of Korea. Limnology and Oceanography 55(1): 1-10. https://doi.org/10.4319/lo.2010.55.1.0001
  22. Lee, Y.W., J.M. Lee and G. Kim. 2009. Identifying sharp hydrographical changes in phytoplankton community structure using HPLC pigment signatures in coastal waters along Jeju Island, Korea. Ocean Science Journal 44(1): 1-10. https://doi.org/10.1007/s12601-009-0001-8
  23. Lee, Y.W., M.O. Park, Y.S. Kim, S.S. Kim and C.K. Kang. 2011. Application of photosynthetic pigment analysis using a HPLC and CHEMTAX program to studies of phytoplankton community composition. The Sea 16(3): 117-124. https://doi.org/10.7850/JKSO.2011.16.3.117
  24. Lohrenz, S.E., C.L. Carroll, A.D. Weidemann and M. Tuel. 2003. Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf. Continental Shelf Research 23(14-15): 1447-1464. https://doi.org/10.1016/S0278-4343(03)00131-6
  25. Lorenzen, C.J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations 1. Limnology and Oceanography 12(2): 343-346. https://doi.org/10.4319/lo.1967.12.2.0343
  26. Mackey, M.D., D.J. Mackey, H.W. Higgins and S.W. Wright. 1996. CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265-283. https://doi.org/10.3354/meps144265
  27. Mantoura, R.F.C. and S.W. Wright. 1997. Phytoplankton pigments in oceanography: guidelines to modern methods. Oceanographic Literature Review 10(44): 1110.
  28. Menden-Deuer, S. and E.J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45(3): 569-579. https://doi.org/10.4319/lo.2000.45.3.0569
  29. Min, J.O., S.Y. Ha, B.H. Choi, M.H. Chung, W.D. Yoon, J.S. Lee and K.H. Shin. 2011. Primary productivity and pigments variation of phytoplankton in the Seomjin River estuary during rainy season in summer. Korean Journal of Ecology and Environment 44(3): 303-313.
  30. Min, J.O., S.Y. Ha, M.H. Chung, B.H. Choi, Y.J. Lee, S.H. Youn, W.D. Youn, J.S. Lee and K.H. Shin. 2012 Seasonal variation of primary productivity and pigment of phytoplankton community structure in the Seomjin Estuary. Korean Journal of Ecology and Environment 45(2): 139-149.
  31. Nicklisch, A. and P. Woitke. 1999. Pigment content of selected planktonic algae in response to simulated natural light fluctuations and a short photoperiod. International Review of Hydrobiology 84(5): 479-495. https://doi.org/10.1002/iroh.199900042
  32. Noh, J.H., S.J. Yoo, J.A. Lee, H.C. Kim and J.H. Lee. 2005. Phytoplankton in the waters of the Ieodo Ocean Research Station determined by microscopy, flow cytometry, HPLC pigment data and remote sensing. Ocean and Polar Research 27(4): 397-417. https://doi.org/10.4217/OPR.2005.27.4.397
  33. Odum, E.P. 1993 Ecology and Our Endangered Life-Support System. Sinauer Associates, Sunderland, Mass. 301.
  34. Oh, H.T., D.J. Kim, W.C. Lee, R.H. Jung, S.J. Hong, Y.S. Kang, Y.W. Lee and C. Tilburg. 2008. Composition of phytoplankton in Gamak Bay by CHEMTAX Analyses. Journal of Environmental Science International 17(10): 1155-1167. https://doi.org/10.5322/JES.2008.17.10.1155
  35. Oh, S.J., C.H. Moon and M.O. Park. 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. Korean Journal of Fisheries and Aquatic Sciences 37(3): 215-225. https://doi.org/10.5657/KFAS.2004.37.3.215
  36. Paerl, H.W., H. Xu, N.S. Hall, K.L. Rossignol, A.R. Joyner, G. Zhu and B. Qin. 2015. Nutrient limitation dynamics examined on a multi-annual scale in Lake Taihu, China: implications for controlling eutrophication and harmful algal blooms. Journal of Freshwater Ecology 30(1): 5-24. https://doi.org/10.1080/02705060.2014.994047
  37. Pan, H., A. Li, Z. Cui, D. Ding, K. Qu, Y. Zheng, L. Liu, T. Jiang and T. Jiang. 2020. A comparative study of phytoplankton community structure and biomass determined by HPLC-CHEMTAX and microscopic methods during summer and autumn in the central Bohai Sea, China. Marine Pollution Bulletin 155: 111172. https://doi.org/10.1016/j.marpolbul.2020.111172
  38. Park, J.W., S.H. Yu, S.Y. Kim, J.E. Lee and E.W. Seo. 2008. Effect of turbid water on the phytoplankton community in Imha Reservoir. Journal of Life Science 18(12): 1671-1678. https://doi.org/10.5352/JLS.2008.18.12.1671
  39. Park, M.O. and J.S. Park. 1997. HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Journal of the Korean Society of Oceanography 32(1): 46-55.
  40. Park, M.O., C.H. Moon, S.Y. Kim, S.R. Yang, K.Y. Kwon and Y.W. Lee. 2001. The Species Composition of Phytoplankton along the Salinity Gradients in the Seomjim River Estuary in Autumn, 2000: Comparison of HPLC Analysis and Microscopic Observations. Algae 16(2): 179-188.
  41. Roy, R., A. Pratihary, G. Mangesh and S.W.A. Naqvi. 2006. Spatial variation of phytoplankton pigments along the southwest coast of India. Estuarine, Coastal and Shelf Science 69(1-2): 189-195. https://doi.org/10.1016/j.ecss.2006.04.006
  42. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W. R. Wallace, B. Tilbrook,F.J. Millero, T.H. Peng, A. Kozyl, T. Ono and Rios, A.F. 2004. The oceanic sink for anthropogenic CO2. Science 305(5682): 367-371. https://doi.org/10.1126/science.1097403
  43. Schluter, L., F. Mohlenberg, H. Havskum and S. Larsen. 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Marine Ecology Progress Series 192: 49-63. https://doi.org/10.3354/meps192049
  44. Schluter, L., S. Behl, M. Striebel and H. Stibor. 2016. Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshwater Biology 61(10): 1627-1639. https://doi.org/10.1111/fwb.12803
  45. Schluter, L., T.L. Lauridsen, G. Krogh and T. Jorgensen. 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios-a comparison between pigment analysis by HPLC and microscopy. Freshwater Biology 51(8): 1474-1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x
  46. Simonsen, R. 1979. The diatom system: ideas on phylogeny. Bacillaria 2: 9-71.
  47. Skuja, H. 1948. Taxonomie des phytoplanktons einiger seen in Uppland, Schweden. Symbolae Botanicae Upslienses 9: 1-399.
  48. Son, M.H., I.S. Zulfugarov, O. Kwon, B.Y. Moon, I.K. Chung, C.H. Lee, J. Lee. 2005. The study on the fluorescence characteristics of several freshwater bloom forming algal species and its application. Algae 20(2): 113-120. https://doi.org/10.4490/ALGAE.2005.20.2.113
  49. Sun, J. and D. Liu. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25(11): 1331-1346. https://doi.org/10.1093/plankt/fbg096
  50. Tamm, M., R. Freiberg, I. Tonno, P. Noges and T. Noges. 2015. Pigment-based chemotaxonomy-a quick alternative to determine algal assemblages in large shallow eutrophic lake? PloS one 10(3): e0122526. https://doi.org/10.1371/journal.pone.0122526
  51. Vadrucci, M.R., M. Cabrini and A. Basset. 2007. Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Transitional Waters Bulletin 1(2): 83-102.
  52. Vidussi, F., H. Claustre, J. Bustillos-Guzman, C. Cailliau, J.C. Marty. 1996. Determination of chlorophylls and carotenoids of marine phytoplankton: separation of chlorophyll a from divinylchlorophyll a and zeaxanthin from lutein. Journal of Plankton Research 18(12): 2377-2382. https://doi.org/10.1093/plankt/18.12.2377
  53. Wang, L., L. Ou, K. Huang, C. Chai, Z. Wang, X. Wang and T. Jiang. 2018. Determination of the spatial and temporal variability of phytoplankton community structure in Daya Bay via HPLC-CHEMTAX pigment analysis. Journal of Oceanology and Limnology 36(3): 750-760. https://doi.org/10.1007/s00343-018-7103-z
  54. Welschmeyer, N.A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography 39(8): 1985-1992. https://doi.org/10.4319/lo.1994.39.8.1985
  55. Wong, C.K. and C.K. Wong. 2003. HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere 52(9): 1633-1640. https://doi.org/10.1016/S0045-6535(03)00503-4
  56. Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjornland, D. Repeta and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183-196. https://doi.org/10.3354/meps077183
  57. Zapata, M., F. Rodriguez and J.L. Garrido. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Marine Ecology Progress Series 195: 29-45. https://doi.org/10.3354/meps195029
  58. Zhou, W., G. Wang, C. Li, Z. Xu, W. Cao, F. Shen. 2017. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton. Applied Optics 56(30): 8362-8371. https://doi.org/10.1364/AO.56.008362