DOI QR코드

DOI QR Code

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Chen, Weizhong (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Li, Fanfan (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Yu, Hongdan (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Ma, Yongshang (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Tian, Yun (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • 투고 : 2020.09.25
  • 심사 : 2021.05.08
  • 발행 : 2021.05.25

초록

Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

키워드

과제정보

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China [No. 51979266] and the National Natural Science Foundation of China [No. 51879258] to this research.

참고문헌

  1. Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Trans. AIME, 146(1), 54-62. https://doi.org/10.2118/942054-G.
  2. Audebert, M., Oxarango, L., Duquennoi, C., Touze-Foltz, N., Forquet, N. and Clement, R. (2016), "Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling-Part II: Constraint methodology of hydrodynamic models", Waste Manage., 55, 176-190. https://doi.org/10.1016/j.wasman.2016.04.005.
  3. Bellmunt, F., Marcuello, A., Ledo, J. and Queralt, P. (2016), "Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments", J. Appl. Geophys., 124, 73-82. https://doi.org/10.1016/j.jappgeo.2015.11.010.
  4. Bernier, F., Volckaert, G., Alonso, E. and Villar, M. (1997), "Suction-controlled experiments on Boom clay", Eng. Geol., 47(4), 325-338. https://doi.org/10.1016/S0013-7952(96)00127-5.
  5. Beyer, W. H. (1991), CRC Standard Mathematical Tables and Formulae, CRC Press, Boca Raton, Florida, U.S.A.
  6. Binley, A., Cassiani, G., Middleton, R. and Winship, P. (2002), "Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging", J. Hydrol., 267(3-4), 147-159. https://doi.org/10.1016/S0022-1694(02)00146-4.
  7. Chambers, J.E., Loke, M.H., Ogilvy, R.D. and Meldrum, P.I. (2004), "Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography", J. Contam. Hydrol., 68(1-2), 1-22. https://doi.org/10.1016/s0169-7722(03)00142-6.
  8. Dafflon, B., Wu, Y., Hubbard, S.S., Birkholzer, J.T., Daley, T.M., Pugh, J.D. and Trautz, R.C. (2013), "Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods", Environ. Sci. Technol., 47(1), 314-321. https://doi.org/10.1007/s12665-012-2168-z.
  9. Daily, W., Ramirez, A., LaBrecque, D. and Nitao, J. (1992), "Electrical resistivity tomography of vadose water movement", Water Resour. Res., 28(5), 1429-1442. https://doi.org/10.1029/91WR03087.
  10. Farzamian, M., Santos, F.A.M. and Khalil, M.A. (2015a), "Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test", J. Appl. Geophys., 121, 71-83. https://doi.org/10.1016/j.jappgeo.2015.07.014.
  11. Farzamian, M., Santos, F.A.M. and Khalil, M.A. (2015b), "Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil", J. Appl. Geophys., 112, 175-189. https://doi.org/10.1016/j.jappgeo.2014.11.016.
  12. French, H.K., Hardbattle, C., Binley, A., Winship, P. and Jakobsen, L. (2002), "Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography", J. Hydrol., 267(3-4), 273-284. https://doi.org/10.1016/S0022-1694(02)00156-7.
  13. Gong, Z. (2015), "Long-term thermo-hydro-mechanical coupled behaviour of Belgium Boom clay". Ph.D. Dissertation, The University of Chinese Academy of Sciences, Beijing, China.
  14. Hassan, A. and Toll, D.G. (2013), "Electrical resistivity tomography for characterizing cracking of soils", Geotech. Sp. Publ., 231, 818-827. https://doi.org/10.1061/9780784412787.083.
  15. Jo S.A., Kim K.Y. and Ryu H.H. (2019), "A new geophysical exploration method based on electrical resistivity to detect underground utility lines and geological anomalies: Theory and field demonstrations", Geomech. Eng., 18(5), 527-534. http://doi.org/10.12989/gae.2019.18.5.527.
  16. Labiouse, V., Escoffier, S., Gastaldo, L. and Mathier, J.F. (2009), "Self-sealing of localised cracks in boom and opalinus clay hollow cylinders", Proceedings of the European Commission TIMODAZ-THERESA Conference, Luxembourg, Germany, September.
  17. Lee, K. H., Park, J.H., Park, J., Lee, I.M. and Lee, S.W. (2019), "Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling" Geomech. Eng., 19(1), 93-104. http://doi.org/10.12989/gae.2019.19.1.093.
  18. Li, S., Su, M. and Xue, Y. (2014), "Study on computed tomography of cross-hole resistivity in urban subway geological prediction", Chin. J. Rock Mech. Eng., 33(5), 913-920.
  19. Li, T.C. (2008), "2D, 3D forward modeling and inversion research of resistivity tomography technique". Ph.D. Dissertation, China University of Geosciences, Beijing, China.
  20. Liu, H.L., Zhou, Q.Y. and Wu, H.Q. (2008), "Laboratorial monitoring of the LNAPL contamination process using electrical resistivity tomography", Chin. J. Geophys., 51(4), 883-891. https://doi.org/10.1002/cjg2.1282.
  21. Loke, M.H. (2004), Tutorial: 2-D and 3-D Electrical Imaging Surveys, Geotomo Software, Malaysia. https://www.geoelectrical.com.
  22. Perri, M.T., Cassiani, G., Gervasio, I., Deiana, R. and Binley, A. (2012), "A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results", J. Appl. Geophys., 79, 6-16. https://doi.org/10.1016/j.jappgeo.2011.12.011.
  23. Rhoades, J.D. and Van Schilfgaarde, J. (1976), "An electrical conductivity probe for determining soil salinity", Soil Sci. Soc. Amer. J., 40(5), 647-651. https://doi.org/10.2136/sssaj1976.03615995004000050016x.
  24. Romero, E., Gens, A. and Lloret, A. (1999), "Water permeability, water retention and microstructure of unsaturated compacted Boom clay", Eng. Geol., 54(1-2), 117-127. https://doi.org/10.1016/S0013-7952(99)00067-8.
  25. Rosqvist, H. and Destouni, G. (2000), "Solute transport through preferential pathways in municipal solid waste", J. Contam. Hydrol., 46(1-2), 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3.
  26. Slater, L., Binley, A.M., Daily, W. and Johnson, R. (2000), "Cross-hole electrical imaging of a controlled saline tracer injection", J. Appl. Geophys., 44(2-3), 85-102. https://doi.org/10.1016/S0926-9851(00)00002-1.
  27. Van Geet, M., Bastiaens, W. and Ortiz, L. (2008), "Self-sealing capacity of argillaceous rocks: review of laboratory results obtained from the SELFRAC project", Phys. Chem. Earth Parts A/B/C, 33(s1), S396-S406. https://doi.org/10.1016/j.pce.2008.10.063.
  28. Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J. and Ogilvy, R.D. (2010), "High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer", J. Appl. Geophys., 70(4), 268-276. https://doi.org/10.1016/j.jappgeo.2009.08.001.
  29. Yang, X., Lassen, R.N., Jensen, K.H. and Looms, M.C. (2015), "Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography", Int. J. Greenhouse Gas Control, 42, 534-544. https://doi.org/10.1016/j.ijggc.2015.09.005.
  30. Yu, H.D., Chen, W.Z., Jia, S.P., Cao, J.J. and Li, X.L. (2012), "Experimental study on the hydro-mechanical behavior of Boom clay", Int. J. Rock Mech. Min. Sci., 53, 159-165. https://doi.org/10.1016/j.ijrmms.2012.05.013.
  31. Zhang, C.L. (2013), "Sealing of fractures in claystone", J. Rock Mech. Geotech. Eng., 5(3), 214-220. https://doi.org/10.1016/j.jrmge.2013.04.001.