• Title/Summary/Keyword: unsaturated clay

Search Result 40, Processing Time 0.026 seconds

Effects of Overburden Pressure and Clay Content on Water Retention Characteristics of Unsaturated Weathered Soils (상재하중과 점토함유량이 불포화 풍화토의 함수특성에 미치는 영향)

  • Park, Seong-Wan;Park, Jai-Young;Tae, Doo-Hyung;Sim, Young-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.53-63
    • /
    • 2010
  • Since the water retention curve is considered as a major parameter to evaluate the unsaturated ground or soils, overburden pressure and clay content on soils underneath ground surface have not been considered for estimating water retention characteristics. Therefore, a need exists that the effect of overburden pressure and clay content on water retention characteristics was assessed in typical weathered soils found in Korea. Soil-Water Characteristic Curve and the unsaturated hydraulic conductivity were estimated using water retention characteristics under the condition of different overburden pressure, clay content, and de-saturation path. Then, these effects are evaluated with the results of SWCC tests from the laboratory. In addition to that, the unsaturated moisture capacity and diffusivity of each case is discussed.

Analysis and design of inclined piles used to prevent downhill creep of unsaturated clay formations

  • Poorooshasb, H.B.;Miura, N.;Noorzad, Ali
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.245-257
    • /
    • 1998
  • This paper present an analysis which may be used to obtain a rational design of a system of inclined piles used in preventing downhill creep of unsaturated clay formations. It uses two simple and relatively easy to measure parameters (an estimate of the maximum downhill creep together with a knowledge of the depth of the so called active zone) to calculate the required section size and the optimal spacing (pitch) of the piles for a desired efficiency of the system as a whole. Design charts are provided to facilitate the process.

Experimental Study on Road-Subsidence Characteristics in Unsaturated Sandy Soils (불포화 사질토의 도로함몰 특성에 관한 실험적 연구)

  • Kweon, Gichul
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : The purpose of this study is to identify the road-subsidence mechanism in unsaturated sandy soils. METHODS : A series of soil chamber tests were conducted under various conditions. RESULTS : The cavity-expansion characteristics in unsaturated sandy soils due to seepage were affected by the outlet size, seepage intensity, relative density, and fine content. CONCLUSIONS : In unsaturated sandy soils, the cavity-expansion speed was affected by the outlet size, relative density, seepage intensity, and clay content; however, the cavity-expansion shape was very similar. As the outlet size and seepage intensity increased, the cavity-expansion speed increased. As the relative density increased, the cavity-expansion speed increased because of a sudden decrease in shear strength, resulting from the increased saturation (reduction of matric suction). The cavity expanded faster with the increasing clay content, up to a certain threshold. It expanded at a slower rate once it passed the threshold. Finally, it reached a stable state where the cavity did not expand due to seepage.

Effect of Rainfall-Induced Infiltration on Unsaturated Weathered Soils with Varying Clay Contents (강우시 점토함유량에 따른 화강풍화토의 불포화 침투 특성)

  • 유남동;정상섬;김재홍;박성완
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.159-166
    • /
    • 2004
  • In this study, experiments on the SWCC were performed in order to find out the characteristics of unsaturated soil and to analyze the stability of unsaturated weathered slopes with rainfall-induced wetting. Several soil types classified by mixture portion of clay (CH) in the weathered soil (SW) were used in experimental tests. To achieve the SWCC, the filter paper method was used on SW with varying clay contents. A tensiometer test was used for measuring wetting front suction of the soils in a laboratory with varying relative densities. Based on the experimental results, it is shown that the wetting front suction increases as clay contest of mixture soil increases : in particular, the wetting front suction increases sharply as the clay contents increase. It is also found that wetting front suction affects the initial wetting band depth and stability of the slope.

Unsaturated Shear Strength Characteristics of Nakdong River Sand and Clay (낙동강 하상 모래와 점토의 불포화 전단강도 특성 평가)

  • Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • The shear strength characteristics of an unsaturated earth material are highly important not only for evaluating the seepage characteristics but also the stability of levee for a lifelong. In this study, unsaturated strength characteristics of Nak-dong river sand and clay that frequently used for the levee construction in southern province of Korea were analyzed using unsaturated triaxial compressive test. The strength characteristics due to the variation of matric suction were analyzed using multi-stage compression technique and the results were directly compared with the non-linear formulation for the apparent cohesion ($C_{max}$), and the friction component ${\varphi}^b$ were determined and evaluated from the test for the application of linear Mohr-Coulomb failure criteria. Cohesion and friction characteristics of the unsaturated levee material under various suction phases were also explored during this study.

Influence of spatial variability on unsaturated hydraulic properties

  • Tan, Xiaohui;Fei, Suozhu;Shen, Mengfen;Hou, Xiaoliang;Ma, Haichun
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.419-429
    • /
    • 2020
  • To investigate the effect of spatial variability on hydraulic properties of unsaturated soils, a numerical model is set up which can simulate seepage process in an unsaturated heterogeneous soil. The unsaturated heterogeneous soil is composed of matrix sand embedded with a small proportion of clay for simulating the heterogeneity. Soil-water characteristic curve and unsaturated hydraulic conductivity curve of the unsaturated soil are expressed by Van Genuchten model. Hydraulic parameters of the matrix sand are considered as random fields. Different autocorrelation lengths (ACLs) of hydraulic parameter of the matrix sand and different proportions of clay are assumed to investigate the influence of spatial variability on the equivalent hydraulic properties of the heterogeneous soil. Four model sizes are used in the numerical experiments to investigate the influence of scale effects and to determine the sizes of representative volume element (RVE) in the numerical simulations. Through a number of Monte Carlo simulations of unsaturated seepage analysis, the means and the coefficients of variations (COVs) of the equivalent hydraulic parameters of the heterogeneous soil are calculated. Simulations show that the ACL and model size has little influence on the means of the equivalent hydraulic parameters, but they have a large influence on the COVs of the equivalent hydraulic parameters. The size of an RVE is mainly affected by the ACL and the proportion of heterogeneity. The influence of spatial variability on the hydraulic parameters of the heterogeneous unsaturated soil can be used as a guidance for geotechnical reliability analysis and design related to unsaturated soils.

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang;Chen, Weizhong;Li, Fanfan;Yu, Hongdan;Ma, Yongshang;Tian, Yun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.295-302
    • /
    • 2021
  • Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition

  • Wang, Hui;Yang, Changyi;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.

Effect of Fines on the Stability of Unsaturated Soil Slopes (불포화 사면안정에 미치는 세립분의 영향분석)

  • Lee, Kyu-Hyun;Jeong, Sang-Seom;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.101-109
    • /
    • 2007
  • In South Korea, many weathered soil slopes are composed of soil mixtures with certain amount of clay fractions in natural soil deposits. Accordingly, it is very important to analyze that effect of the fines on the stability of unsaturated soil slopes. In this study, five different soil types classified by mixture portion of fines were used and experiment on the soil-water characteristic curve tests (SWCC) using GCTS (Geotechnical Consulting and Testing Systems) pressure plate were performed in order to analyze the stability of unsaturated soil slopes. Based on the infiltration analysis which contains SWCC test result by the SEEP/W, it is shown that the increasing rate of the wetting band depth was decreased as the fines content and the relative density were increased. According to the stability analysis result of the unsaturated soil slopes through the SLOPE/W, it is found that the transition from the wetting band depth to the variation of strength parameters which affect the stability of unsaturated soil slopes appears to occur around $10\sim15%$ of clay contents in the mixtures.