Acknowledgement
The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China [No. 51979266] and the National Natural Science Foundation of China [No. 51879258] to this research.
References
- Archie, G.E. (1942), "The electrical resistivity log as an aid in determining some reservoir characteristics", Trans. AIME, 146(1), 54-62. https://doi.org/10.2118/942054-G.
- Audebert, M., Oxarango, L., Duquennoi, C., Touze-Foltz, N., Forquet, N. and Clement, R. (2016), "Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling-Part II: Constraint methodology of hydrodynamic models", Waste Manage., 55, 176-190. https://doi.org/10.1016/j.wasman.2016.04.005.
- Bellmunt, F., Marcuello, A., Ledo, J. and Queralt, P. (2016), "Capability of cross-hole electrical configurations for monitoring rapid plume migration experiments", J. Appl. Geophys., 124, 73-82. https://doi.org/10.1016/j.jappgeo.2015.11.010.
- Bernier, F., Volckaert, G., Alonso, E. and Villar, M. (1997), "Suction-controlled experiments on Boom clay", Eng. Geol., 47(4), 325-338. https://doi.org/10.1016/S0013-7952(96)00127-5.
- Beyer, W. H. (1991), CRC Standard Mathematical Tables and Formulae, CRC Press, Boca Raton, Florida, U.S.A.
- Binley, A., Cassiani, G., Middleton, R. and Winship, P. (2002), "Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging", J. Hydrol., 267(3-4), 147-159. https://doi.org/10.1016/S0022-1694(02)00146-4.
- Chambers, J.E., Loke, M.H., Ogilvy, R.D. and Meldrum, P.I. (2004), "Noninvasive monitoring of DNAPL migration through a saturated porous medium using electrical impedance tomography", J. Contam. Hydrol., 68(1-2), 1-22. https://doi.org/10.1016/s0169-7722(03)00142-6.
- Dafflon, B., Wu, Y., Hubbard, S.S., Birkholzer, J.T., Daley, T.M., Pugh, J.D. and Trautz, R.C. (2013), "Monitoring CO2 intrusion and associated geochemical transformations in a shallow groundwater system using complex electrical methods", Environ. Sci. Technol., 47(1), 314-321. https://doi.org/10.1007/s12665-012-2168-z.
- Daily, W., Ramirez, A., LaBrecque, D. and Nitao, J. (1992), "Electrical resistivity tomography of vadose water movement", Water Resour. Res., 28(5), 1429-1442. https://doi.org/10.1029/91WR03087.
- Farzamian, M., Santos, F.A.M. and Khalil, M.A. (2015a), "Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test", J. Appl. Geophys., 121, 71-83. https://doi.org/10.1016/j.jappgeo.2015.07.014.
- Farzamian, M., Santos, F.A.M. and Khalil, M.A. (2015b), "Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil", J. Appl. Geophys., 112, 175-189. https://doi.org/10.1016/j.jappgeo.2014.11.016.
- French, H.K., Hardbattle, C., Binley, A., Winship, P. and Jakobsen, L. (2002), "Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography", J. Hydrol., 267(3-4), 273-284. https://doi.org/10.1016/S0022-1694(02)00156-7.
- Gong, Z. (2015), "Long-term thermo-hydro-mechanical coupled behaviour of Belgium Boom clay". Ph.D. Dissertation, The University of Chinese Academy of Sciences, Beijing, China.
- Hassan, A. and Toll, D.G. (2013), "Electrical resistivity tomography for characterizing cracking of soils", Geotech. Sp. Publ., 231, 818-827. https://doi.org/10.1061/9780784412787.083.
- Jo S.A., Kim K.Y. and Ryu H.H. (2019), "A new geophysical exploration method based on electrical resistivity to detect underground utility lines and geological anomalies: Theory and field demonstrations", Geomech. Eng., 18(5), 527-534. http://doi.org/10.12989/gae.2019.18.5.527.
- Labiouse, V., Escoffier, S., Gastaldo, L. and Mathier, J.F. (2009), "Self-sealing of localised cracks in boom and opalinus clay hollow cylinders", Proceedings of the European Commission TIMODAZ-THERESA Conference, Luxembourg, Germany, September.
- Lee, K. H., Park, J.H., Park, J., Lee, I.M. and Lee, S.W. (2019), "Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling" Geomech. Eng., 19(1), 93-104. http://doi.org/10.12989/gae.2019.19.1.093.
- Li, S., Su, M. and Xue, Y. (2014), "Study on computed tomography of cross-hole resistivity in urban subway geological prediction", Chin. J. Rock Mech. Eng., 33(5), 913-920.
- Li, T.C. (2008), "2D, 3D forward modeling and inversion research of resistivity tomography technique". Ph.D. Dissertation, China University of Geosciences, Beijing, China.
- Liu, H.L., Zhou, Q.Y. and Wu, H.Q. (2008), "Laboratorial monitoring of the LNAPL contamination process using electrical resistivity tomography", Chin. J. Geophys., 51(4), 883-891. https://doi.org/10.1002/cjg2.1282.
- Loke, M.H. (2004), Tutorial: 2-D and 3-D Electrical Imaging Surveys, Geotomo Software, Malaysia. https://www.geoelectrical.com.
- Perri, M.T., Cassiani, G., Gervasio, I., Deiana, R. and Binley, A. (2012), "A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results", J. Appl. Geophys., 79, 6-16. https://doi.org/10.1016/j.jappgeo.2011.12.011.
- Rhoades, J.D. and Van Schilfgaarde, J. (1976), "An electrical conductivity probe for determining soil salinity", Soil Sci. Soc. Amer. J., 40(5), 647-651. https://doi.org/10.2136/sssaj1976.03615995004000050016x.
- Romero, E., Gens, A. and Lloret, A. (1999), "Water permeability, water retention and microstructure of unsaturated compacted Boom clay", Eng. Geol., 54(1-2), 117-127. https://doi.org/10.1016/S0013-7952(99)00067-8.
- Rosqvist, H. and Destouni, G. (2000), "Solute transport through preferential pathways in municipal solid waste", J. Contam. Hydrol., 46(1-2), 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3.
- Slater, L., Binley, A.M., Daily, W. and Johnson, R. (2000), "Cross-hole electrical imaging of a controlled saline tracer injection", J. Appl. Geophys., 44(2-3), 85-102. https://doi.org/10.1016/S0926-9851(00)00002-1.
- Van Geet, M., Bastiaens, W. and Ortiz, L. (2008), "Self-sealing capacity of argillaceous rocks: review of laboratory results obtained from the SELFRAC project", Phys. Chem. Earth Parts A/B/C, 33(s1), S396-S406. https://doi.org/10.1016/j.pce.2008.10.063.
- Wilkinson, P.B., Meldrum, P.I., Kuras, O., Chambers, J.E., Holyoake, S.J. and Ogilvy, R.D. (2010), "High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer", J. Appl. Geophys., 70(4), 268-276. https://doi.org/10.1016/j.jappgeo.2009.08.001.
- Yang, X., Lassen, R.N., Jensen, K.H. and Looms, M.C. (2015), "Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography", Int. J. Greenhouse Gas Control, 42, 534-544. https://doi.org/10.1016/j.ijggc.2015.09.005.
- Yu, H.D., Chen, W.Z., Jia, S.P., Cao, J.J. and Li, X.L. (2012), "Experimental study on the hydro-mechanical behavior of Boom clay", Int. J. Rock Mech. Min. Sci., 53, 159-165. https://doi.org/10.1016/j.ijrmms.2012.05.013.
- Zhang, C.L. (2013), "Sealing of fractures in claystone", J. Rock Mech. Geotech. Eng., 5(3), 214-220. https://doi.org/10.1016/j.jrmge.2013.04.001.