Acknowledgement
Jie Meng was partially supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2017R1A5A1015722).
References
- A. Aigner, Uber die Moglichkeit von x4 + y4 = z4 in quadratischen Korpern, Jber. Deutsch. Math.-Verein 43 (1934), 226-229.
- A. Aigner, Die Unmoglichkeit von x6+y6 = z6 und x6+y6 = z6 in quadratischen Korpern, Monatsh. Math. 61 (1957), 147-150. https://doi.org/10.1007/BF01641485
- Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2 × 2 integral matrices, Tsukuba J. Math. 22 (1998), no. 3, 637-643. https://doi.org/10.21099/tkbjm/1496163669
- R. Z. Domiaty, Solutions of x4 + y4 = z4 in 2 × 2 integral matrices, Amer. Math. Monthly 73 (1966), 631. https://doi.org/10.2307/2314801
- N. Freitas and S. Siksek, Fermat's last theorem over some small real quadratic fields, Algebra Number Theory 9 (2015), no. 4, 875-895. https://doi.org/10.2140/ant.2015. 9.875
- A. Grytczuk, On Fermat's equation in the set of integral 2 × 2 matrices, Period. Math. Hungar. 30 (1995), no. 1, 67-72. https://doi.org/10.1007/BF01876927
- A. Grytczuk and I. Kurzydlo, Note on the matrix Fermat's equation, Notes Num. Theory Disc. Math. 17 (2011), 4-11.
- R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
- F. Jarvis and P. Meekin, The Fermat equation over Q(√2), J. Number Theory 109 (2004), no. 1, 182-196. https://doi.org/10.1016/j.jnt.2004.06.006
- I. Kaddoura and H. Katbi, A matrix analog to last Fermat's theorem and Beal's conjecture, 22th LAAS International Science Conference, Lebanon, 2016.
- A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), no. 1, 19-40.
- M. Le and C. Li, On Fermat's equation in integral 2×2 matrices, Period. Math. Hungar. 31 (1995), no. 3, 219-222. https://doi.org/10.1007/BF01882197
- H. Qin, Fermat's problem and Goldbach's problem over MnZ, Linear Algebra Appl. 236 (1996), 131-135. https://doi.org/10.1016/0024-3795(94)00137-5
- L. N. Vaserstein, Noncommutative number theory, in Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), 445-449, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989. https://doi.org/10.1090/conm/083/991989
- A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551. https://doi.org/10.2307/2118559