DOI QR코드

DOI QR Code

FERMAT'S EQUATION OVER 2-BY-2 MATRICES

  • Chien, Mao-Ting (Department of Mathematics Soochow University) ;
  • Meng, Jie (Finance.Fishery.Manufacture Industrial Mathematics Center on Big Data Pusan National University)
  • Received : 2020.05.04
  • Accepted : 2020.12.09
  • Published : 2021.05.31

Abstract

We study the solvability of the Fermat's matrix equation in some classes of 2-by-2 matrices. We prove the Fermat's matrix equation has infinitely many solutions in a set of 2-by-2 positive semidefinite integral matrices, and has no nontrivial solutions in some classes including 2-by-2 symmetric rational matrices and stochastic quadratic field matrices.

Keywords

Acknowledgement

Jie Meng was partially supported by National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (NRF-2017R1A5A1015722).

References

  1. A. Aigner, Uber die Moglichkeit von x4 + y4 = z4 in quadratischen Korpern, Jber. Deutsch. Math.-Verein 43 (1934), 226-229.
  2. A. Aigner, Die Unmoglichkeit von x6+y6 = z6 und x6+y6 = z6 in quadratischen Korpern, Monatsh. Math. 61 (1957), 147-150. https://doi.org/10.1007/BF01641485
  3. Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2 × 2 integral matrices, Tsukuba J. Math. 22 (1998), no. 3, 637-643. https://doi.org/10.21099/tkbjm/1496163669
  4. R. Z. Domiaty, Solutions of x4 + y4 = z4 in 2 × 2 integral matrices, Amer. Math. Monthly 73 (1966), 631. https://doi.org/10.2307/2314801
  5. N. Freitas and S. Siksek, Fermat's last theorem over some small real quadratic fields, Algebra Number Theory 9 (2015), no. 4, 875-895. https://doi.org/10.2140/ant.2015. 9.875
  6. A. Grytczuk, On Fermat's equation in the set of integral 2 × 2 matrices, Period. Math. Hungar. 30 (1995), no. 1, 67-72. https://doi.org/10.1007/BF01876927
  7. A. Grytczuk and I. Kurzydlo, Note on the matrix Fermat's equation, Notes Num. Theory Disc. Math. 17 (2011), 4-11.
  8. R. A. Horn and C. R. Johnson, Matrix Analysis, second edition, Cambridge University Press, Cambridge, 2013.
  9. F. Jarvis and P. Meekin, The Fermat equation over Q(√2), J. Number Theory 109 (2004), no. 1, 182-196. https://doi.org/10.1016/j.jnt.2004.06.006
  10. I. Kaddoura and H. Katbi, A matrix analog to last Fermat's theorem and Beal's conjecture, 22th LAAS International Science Conference, Lebanon, 2016.
  11. A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), no. 1, 19-40.
  12. M. Le and C. Li, On Fermat's equation in integral 2×2 matrices, Period. Math. Hungar. 31 (1995), no. 3, 219-222. https://doi.org/10.1007/BF01882197
  13. H. Qin, Fermat's problem and Goldbach's problem over MnZ, Linear Algebra Appl. 236 (1996), 131-135. https://doi.org/10.1016/0024-3795(94)00137-5
  14. L. N. Vaserstein, Noncommutative number theory, in Algebraic K-theory and algebraic number theory (Honolulu, HI, 1987), 445-449, Contemp. Math., 83, Amer. Math. Soc., Providence, RI, 1989. https://doi.org/10.1090/conm/083/991989
  15. A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443-551. https://doi.org/10.2307/2118559