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FERMAT’S EQUATION OVER 2-BY-2 MATRICES

Mao-Ting Chien and Jie Meng

Abstract. We study the solvability of the Fermat’s matrix equation in

some classes of 2-by-2 matrices. We prove the Fermat’s matrix equation

has infinitely many solutions in a set of 2-by-2 positive semidefinite in-
tegral matrices, and has no nontrivial solutions in some classes including

2-by-2 symmetric rational matrices and stochastic quadratic field matri-
ces.

1. Introduction

Pierre de Fermat mentioned in 1637 that for any integer n greater than 2,
no positive integers a, b, c satisfy the equation

(1) an + bn = cn.

The Fermat’s last theorem had become a conjecture since then. Andrew Wiles
[15] confirmed the conjecture is true. Subsequent research has extended the
problem of Fermat’s last theorem over some number fields (cf. [5,9]). In contrast
to the classical Fermat’s last theorem in integers, there have been a number of
papers on the Fermat’s equation in matrices (cf. [6, 11–14]). In particular, the
Fermat’s equation has been investigated in 2-by-2 integer matrices [3], rational
matrices [7], general linear group GL2(Z) [3] and special linear group SL2(Z)
of 2-by-2 matrices with det = 1 [11].

In this paper, we study the solvability of Fermat’s matrix equation

(2) An +Bn = Cn

in some classes of 2-by-2 matrices for n ≥ 4. We prove the Fermat’s matrix
equation (2) has infinitely many solutions in a commuting family of 2-by-2
symmetric positive semidefinite integral matrices, and the equation (2) has no
nontrivial solutions in some 2-by-2 symmetric rational matrices and m-by-m
complex row stochastic matrices with row sums belonging to the quadratic field
Q(
√

2).
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2. Fermat’s matrix equation

It is no surprising the Fermat’s matrix equation (2) has solutions in positive
integral matrices, such as(

2 6
6 3

)3

+

(
7 3
3 3

)3

=

(
3 6
6 6

)3

.

The three matrices are symmetric, but not positive semidefinite. Observe that
the mutual commutativity is invalid for the three matrices. In the following,
we determine a class of commuting family of 2-by-2 matrices.

Lemma 1. Let K be a subset of complex numbers and q be a complex number.

Then H(q,K) =
{(

a b
b c

)
∈M2(K), a− c = bq

}
is a commuting family.

Proof. Suppose
(
a b
b c

)
and ( x yy z ) are matrices in H(q,K). Then (a − c)y =

b(x− z), which implies that the two matrices commute since(
a b
b c

)(
x y
y z

)
=

(
ax+ by ay + bz
bx+ cy by + cz

)
and(

x y
y z

)(
a b
b c

)
=

(
ax+ by bx+ cy
ay + bz by + cz

)
.

�

Denote H+(q,K) the positive definite matrices in H(q,K). We give a sub-
class of positive definite matrices for which the Fermat’s matrix equation (2)
has infinitely many solutions when n = 3.

Theorem 2. The Fermat’s matrix equation (2) has infinitely many solutions
in H+(±1,N) for n = 3.

Proof. Firstly, we find three particular matrices in H+(1,N) satisfying the Fer-
mat’s matrix equation (2):

(3)

(
7 3
3 4

)3

+

(
11 6
6 5

)3

=

(
12 6
6 6

)3

.

Let
(
a b
b a−b

)
be an arbitrary matrix in H+(1,N), which has determinant a2 −

ab− b2 > 0. Direct computations show that(
a b
b a− b

)(
7 3
3 4

)
=

(
7a+ 3b 3a+ 4b
3a+ 4b 4a− b

)
which is symmetric and has positive determinant 19(a2 − ab − b2), and thus
belongs to H+(1,N). Since H(1,N) is a commuting family, it follows that(

a b
b a− b

)3(
7 3
3 4

)3

=

((
a b
b a− b

)(
7 3
3 4

))3

.

Similarly, (
a b
b a− b

)(
11 6
6 5

)
=

(
11a+ 6b 6a+ 5b
6a+ 5b 5a+ b

)
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and (
a b
b a− b

)(
12 6
6 6

)
=

(
12a+ 6b 6a+ 6b
6a+ 6b 6a

)
which are in H+(1,N). Multiplying

(
a b
b a−b

)3
to both sides of equation (3), we

obtain that(
7a+ 3b 3a+ 4b
3a+ 4b 4a− b

)3

+

(
11a+ 6b 6a+ 5b
6a+ 5b 5a+ b

)3

=

(
12a+ 6b 6a+ 6b
6a+ 6b 6a

)3

.

Note that H+(−1,N) = {A = PTBP : B ∈ H+(1,N)}, where P = ( 0 1
1 0 ) .

Suppose A,B,C ∈ H+(1,N) satisfy the Fermat’s matrix equation A3 + B3 =
C3. Then,

PTA3P + PTB3P = PTC3P,

which yields
(PTAP )3 + (PTBP )3 = (PTCP )3.

Set X = PTAP , Y = PTBP , Z = PTCP . Then X,Y, Z ∈ H+(−1,N) and
X3 + Y 3 = Z3. �

Jarvis and Meekin [9] proved that the equation xn + yn = zn with x, y, z ∈
Q(
√

2) has no nontrivial solutions, xyz 6= 0, when n ≥ 4, where Q(
√

2) is the

real quadratic field consisting of a + b
√

2, a, b ∈ Q. The result is helpful for
studying of the Fermat’s matrix equation (2) which has no nontrivial solutions
in some matrix classes.

Theorem 3. The Fermat’s matrix equation An +Bn = Cn has no nontrivial
solutions in H(q,Q) for q = ±2,±3,±6 and n ≥ 4.

Proof. Assume q = 2. Suppose A,B,C ∈ H(2,Q) are nontrivial solutions
satisfying An + Bn = Cn with n ≥ 4. Let T =

(
t1 t2
t2 t3

)
∈ H(2,Q), then

t1 − t3 = 2t2. It is easy to see that the eigenvalues of T are

(4) λ±(T ) =
t1 + t3 ± 2t2

√
2

2
∈ Q(

√
2).

By Lemma 1, the family H(2,Q) is commuting. Hence, by [8, Theorem 2.2.3],
there exists a unitary matrix U which simultaneously upper triangularizes the
matrices A,B,C. The assumption An +Bn = Cn implies that

(U∗AU)n + (U∗BU)n = (U∗CU)n.

Comparing the (1,1) entries on both sides, we have that

(5) λε(A)n + λξ(B)n = λη(C)n,

where ε, ξ, η ∈ {+,−} according to the choice of the eigenvalues of (4). The

eigenvalues, according to (4), are elements of Q(
√

2), and thus by a result of
Jarvis and Meekin [9], one of the eigenvalues should be 0, say λε(A). From (4), if

A = ( a1 a2a2 a3 ), a1−a3 = 2a2, then λε(A) = a1+a3±2a2
√
2

2 . The condition λε(A) =
0 implies that a2 = 0, and thus a1 = a3 which is nonzero for A 6= 0, gives
a contradiction. Therefore, the matrix equation has no nontrivial solutions in



612 M. T. CHIEN AND J. MENG

H(2,Q) for n ≥ 4. Apply the same reasoning to prove Theorem 2, we obtain
that the Fermat’s matrix equation An +Bn = Cn has no solution in H(−2,Q)
for n ≥ 4.

Assume q = ±3,±6. We quote a result due to Freitas and Siksek [5]: The

Fermat’s equation xn + yn = zn has no nontrivial solutions in Q(
√
d) for n ≥ 4

when 3 ≤ d 6= 5, 17 ≤ 23 is a square free integer. Let T =
(
t1 t2
t2 t3

)
∈ H(q,Q).

Then t1 − t3 = qt2. It is easy to see that the eigenvalues of T are

λ±(T ) =
t1 + t3 ± t2

√
q2 + 4

2
∈ Q(

√
q2 + 4).

If q = ±3, q2 + 4 = 13. Suppose An + Bn = Cn has no nontrivial solutions in
H(q,Q). Repeating the argument used for q = ±2, we obtain the equation (5)

has a solution in Q(
√

13), a contradiction. For q = ±6, in this case, q2+4 = 40,

and Q(
√

40) = Q(
√

10). The conclusion follows a similar way. �

For q = 0, we have the following result.

Theorem 4. The Fermat’s matrix equation An+Bn = Cn has infinitely many
solutions in H(0,Z) for all positive integer n.

Proof. We claim that for arbitrary a, b ∈ C and positive integer n,

(6)

(
a a
a a

)n
+

(
b −b
−b b

)n
=

(
a+ b a− b
a− b a+ b

)n
.

Direct computations show that(
a a
a a

)n
= an

(
1 1
1 1

)n
= an

(
2n−1 2n−1

2n−1 2n−1

)
and (

b −b
−b b

)n
= an

(
1 −1
−1 1

)n
= bn

(
2n−1 −2n−1

−2n−1 2n−1

)
.

On the other hand,(
a+ b a− b
a− b a+ b

)n
=

((
1 1
−1 1

)(
2a 0
0 2b

)(
1 1
−1 1

)−1)n
=

(
1
2 ((2a)n + (2b)n) 1

2 ((2a)n − (2b)n)
1
2 ((2a)n − (2b)n) 1

2 ((2a)n + (2b)n)

)
.

This proves the identity (6). �

Remark. It is explicitly proved in [4] that there exist solutions of the Fermat’s
matrix equation A4 + B4 = C4 in 2-by-2 integral matrices. In addition, it is
shown [10] that the Fermat’s matrix equation An+Bn = Cn has infinitely many
solutions in weighted shift integral matrices. Theorem 4 provides a class of
positive semidefinite integral matrices which is a subset of H(0,Z) and assures
the solvability of Fermat’s matrix equation (6).



FERMAT’S EQUATION OVER 2-BY-2 MATRICES 613

Vaserstein [14] proved that the Fermat’s matrix equation An + Bn = Cn

in GL2(Z) with det = ±1 has a nontrivial solution if and only if n is not a
multiple of 4 or 6. In SL2(Z), Khazanov [11] proved that the Fermat’s matrix
equation has a nontrivial solution if and only if n is not a multiple of 3 or 4.
When n = 4, there is a solution in 2-by-2 invertible matrices, for instance,(

1 6
9 4

)4

+

(
8 6
1 7

)4

=

(
5 10
5 5

)4

.

For n = 4, 6, we have the following result.

Theorem 5. The Fermat’s matrix equation An +Bn = Cn has no nontrivial
solutions in H(q,Q) for any integer q 6= 0 when n = 4 and 6.

Proof. As indicated in the proof of Theorem 3, the eigenvalues of a matrix in

H(q,Q) are elements in Q(
√
q2 + 4). Suppose there are matrices A,B,C ∈

H(q,Q) satisfying A4 +B4 = C4. Apply the same technique used in the proof
of Theorem 3, it yields

(7) λε(A)4 + λξ(B)4 = λη(C)4,

where ε, ξ, η ∈ {1,−1} according to the choice of the respective eigenvalues. By
a theorem of [1]: The equation x4 +y4 = z4 has nontrivial solutions in the field

Q(
√
d), where d is a square-free integer, d 6= 0, 1, if and only if d = −7. Since

q2 + 4 6= −7 and q2 + 4 is square free for q 6= 0, it follows that the equation

x4 + y4 = z4 has no nontrivial solutions in Q(
√
q2 + 4), a contradiction to the

fact of (7).
The assertion for n = 6 can be followed by using the similar argument to

the Fermat’s matrix equation n = 4, and applying a known result by Aigner [2]

that the equation x6 + y6 = z6 has no nontrivial solutions in the field Q(
√
d)

if d is a square-free integer, d 6= 0, 1. �

We summarize in Table 1 the solvability of the Fermat’s matrix equation
An +Bn = Cn, A,B,C ∈ H(q,Q), q ∈ Z.

Table 1. Solvability of An +Bn = Cn in H(q,Q)

q n nontrivial solutions
0 ≥ 3 ∞ (Theorem 4)
±1 3 ∞ (Theorem 2)
±2,±3,±6 ≥ 4 ∅ (Theorem 3)
6= 0 4, 6 ∅ (Theorem 5)

Although our discussion, so far, is restricted to 2-by-2 matrices, we may
relax our results to higher dimensions of matrices. One typical generalization
is given as follows.
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For any positive integer m, denote

H2m(q,K) =


 T11 · · · T1m

...
. . .

...
Tm1 · · · Tmm

 ∈M2m(K), Tij ∈ H(q,K), i, j = 1, . . . ,m

 .

Theorem 6. The Fermat’s matrix equation (2) has infinitely many solutions
in H2m(±1,N) for n = 3.

Proof. We prove the case for H2m(1,N), and it can be proved analogously for
the case H2m(−1,N). Clearly, H2m(q,K) is a commuting family. By Theorem

2, there are matrices A,B,C ∈ H(1,N) satisfying A3+B3 = C3. Let Â, B̂, Ĉ ∈
M2m(N) be three block diagonal matrices with block diagonals being A, B and

C, respectively. Then, we have Â3 + B̂3 = Ĉ3. Let T = (Tij) ∈ H2m(1,N).
Since Tij commutes with A,B and C for i, j = 1, . . . ,m, it follows that T

commutes with Â, B̂ and Ĉ, and thus

(TÂ)3 + (TB̂)3 = (TĈ)3,

where TÂ, T B̂, T Ĉ ∈ H2m(1,N). �

Finally, we give another matrix class for which the Fermat’s matrix equation
has no solutions.

Theorem 7. The Fermat’s matrix equation An + Bn = Cn, n ≥ 4, has no
nontrivial solutions in the class of m×m complex row stochastic matrices with
nonzero row sums belonging to the quadratic field Q(

√
2).

Proof. Let C = {A = (aij) ∈ Mm(C) :
∑m
j=1 aij = r(A) ∈ Q(

√
2), i =

1, 2, . . . ,m}. Then the class C has a common eigenvector u1 = 1√
m

(1, 1, . . . , 1)T

∈ Cm corresponding to the eigenvalue rA for every A ∈ C. Extend the vector u1
to an orthonormal basis u1, u2, . . . , um for Cm, and denote the unitary matrix
U = [u1 u2 · · · um], we obtain that, for A ∈ C,

U∗AU =


r(A) t12 t13 · · · t1k

0
0 A1

...
0

 .
As a consequence, we have

An = U


r(A)n t̃12 t̃13 · · · t̃1k

0

0 Ã1

...
0

U∗.
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Hence, if A,B,C ∈ C satisfy the matrix equation An +Bn = Cn, n ≥ 4, then

r(A)n + r(B)n = r(C)n, n ≥ 4

which, by [9], should not have nontrivial solutions Q(
√

2), and leads to a con-
tradiction. �

We have the following immediate consequence.

Theorem 8. The Fermat’s matrix equation An +Bn = Cn has no nontrivial
solutions in the circulant matrices with entries from Q(

√
2) and nonzero row

sum for n ≥ 4.

Remark. It is obvious that matrices in H(0,N) are circulant with nonzero row
sum. In contrast with Theorem 4, the Fermat’s matrix equation An+Bn = Cn,
according to Theorem 8, has no nontrivial solutions in H(0,N) for n ≥ 4.
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