DOI QR코드

DOI QR Code

Syntheses of 70% Solids Acrylic Resin and Comparative Study in Physical Properties as Acrylic Urethane Resin Coatings

고형분 70% 아크릴수지 합성과 아크릴-우레탄 도료의 도막물성 비교 연구

  • Received : 2021.03.31
  • Accepted : 2021.04.28
  • Published : 2021.04.30

Abstract

To prepare acrylic resin coatings containing 70% of solids, we used n-butyl methacrylate(BMA), methyl methacrylate(MMA), 2-hydroxyethyl methacrylate(2-HEMA), and acetoacetoxyethyl acrylate(AAEA), caprolactone acrylate(CLA) as raw materials, the glass transition temperature(Tg) of acrylic copolymer was adjusted around 50 ℃. The viscosity and molecular weight of the acrylic resins was increased with increasing OH values. Di-tert-amyl peroxide was found to be the suitable initiator to get high-solids acrylic resins. The optimum reaction conditions found in the study are 5 wt% of initiator, 4 wt% of chain transfer agent, 4 hrs of dropping time, and 140 ℃ of reaction temperature. The structure of the synthesized resins were characterized by FT-IR and 1H-NMR spectroscopy. Number average molecular weight of 1900~2600 and molecular wight distribution of 1.4~2.1 were obtained. Crosslinked acrylic urethane clear coatings were obtained by curing reaction between the synthesized acrylic resins and hexamethylene diisocyanate trimer(Desmodur N-3300), the equivalent ratio of NCO/OH was 1.2/1.0. The physical properties from the following studies were carried out: viscosity(Zahn cup #2), adhesion, drying time, pot-life, pensil hardness, and 60° specular gloss. Various properties of the acrylic urethane clear coatings were also evaluated on the coating specimens. Adhesion property to a substrate, drying time, pot-life, pencil hardness, and 60° specular gloss of prepared paint showed quite good properties. Futhermore, prepared paint containing 10% of CLA showed quite good properties for adhesion, low viscosity and high hardness.

고형분 70% 아크릴수지를 합성하기 위해 n-butyl methacrylate(BMA), methyl methacrylate(MMA), 2-hydroxyethyl methacrylate(2-HEMA) 및 acetoacetoxyethyl acrylate(AAEA)와 caprolactone acrylate(CLA)를 사용하여 공중합체의 유리전이온도(Tg)를 50 ℃로 조정하여 합성하였으며, 합성한 아크릴수지의 점도와 분자량은 수산기가(OH values)의 증가에 따라 증가되었다. 높은 고형분의 아크릴수지 합성에 적합한 반응개시제는 di-tert-amyl peroxide 이었으며, 최적의 합성조건은 반응 개시제 5 wt%, 연쇄이동제 4 wt%, 반응온도 140 ℃에서 적하시간은 4시간이었다. 합성수지의 구조는 FT-IR과 1H-NMR spectroscopy로 확인하였고, 수평균 분자량은 1900~2600, 분자량 분포도 1.4~2.1을 얻었다. 합성한 아크릴수지와 무황변성 폴리이소시아네이트인 hexamethylene diisocyanate trimer(Desmodur N-3300)의 NCO/OH 당량비를 1.2/1.0으로 조절하여 아크릴-우레탄 투명도료를 제조하였다. 도료의 물리적 특성으로 점도, 부착성, 건조시간, 가사시간, 연필경도 및 광택을 비교 검토한 결과 부착성, 건조시간, 가사시간, 연필경도 및 광택이 양호한 결과를 나타내었고, 특히 CLA를 10 % 도입한 도료는 부착성이 우수하고 낮은 점도와 높은 경도를 나타내었다.

Keywords

Acknowledgement

본 연구는 2019년 국토교통부의 국토교통기술촉진연구사업과 관련된 연구의 일부로서 이에 감사드립니다.

References

  1. A. Rolewicz-Kalinska, K. Lelicinska-Serafin, P. Manczarski, "Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process", Chemical Engineering Research & Design, Vol.165, pp. 69-80, (2021). https://doi.org/10.1016/j.cherd.2020.10.017
  2. R. Gonzalez-Blanco, M. F. Cunningham, E. Saldivar-Guerra, "High Solids TEMPO-Mediated Radical Semibatch Emulsion Polymerization of Styrene", Journal of Polymer Science Part A: Polymer Chemistry, Vol.54, No.1 pp. 49-62, (2016).
  3. T. McAfee, N. Leonardi, R. Montgomery, J. Siqueira, T. Zekoski, M. F. Drenski, W. F. Reed, "Automatic Control of Polymer Molecular Weight during Synthesis", Macromolecules, Vol.49, No.19 pp. 7170-7183, (2016). https://doi.org/10.1021/acs.macromol.6b01522
  4. F. Gasc, S. Clerc, E. Gayon, J. M. Campagne, P. Lacroix-Desmazes, "Supercritical CO2-mediated design of Pd supported catalysts using an amphiphilic functional copolymer", Journal of Supercritical Fluids, Vol.105, pp. 136-145, (2015). https://doi.org/10.1016/j.supflu.2015.01.003
  5. L. Cai, S. F. Wang, "Poly(epsilon-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responses", Polymer, Vol.51, No.1 pp. 164-177, (2010). https://doi.org/10.1016/j.polymer.2009.11.042
  6. L. F. Gao, J. Oh, Y. F. Tu, T. Chang, C. Y. Li, "Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect", Polymer, Vol.170, pp. 198-203, (2019). https://doi.org/10.1016/j.polymer.2019.03.018
  7. J. W. Kim, D. C. Lee, J. S. Choi, "Synthesis of Eco-Friendly High Solid Acrylic Resins and Curing Properties of Acrylic Urethane Resin Coatings", Korean Chemical Engineering Research, Vol.55, No.5 pp. 586-592, (2017). https://doi.org/10.9713/kcer.2017.55.5.586
  8. A. Romo-Uribe, "Viscoelastic Behavior of Unentangled POSS-Styrene Nanocomposites and the Modification of Macromolecular Dynamics", Macromolecules, Vol.50, No.18 pp. 7177-7189, (2017). https://doi.org/10.1021/acs.macromol.7b01645
  9. J. P. Xu, S. Xue, J. L. Zhang, Y. Han, S. Q. Xia, "Molecular Design of the Amphiphilic Polymer as a Viscosity Reducer for Heavy Crude Oil: From Mesoscopic to Atomic Scale", Energy & Fuels, Vol.35, No.2 pp. 1152-1164, (2021). https://doi.org/10.1021/acs.energyfuels.0c03260
  10. A. A. Berlin, N. G. Matveyeva, "The progress in the chemistry of polyreactive oligomers and some trends of its development. I. Synthesis and physicochemical properties", Journal of Polymer Science, Vol.12, pp. 1-64, (1977).
  11. C. D. Diakoumakos, I. Raptis, A. Tserepi, P. Argitis, "Free-radical synthesis of narrow polydispersed 2-hydroxyethyl methacrylate-based tetrapolymers for dilute aqueous base developable negative photoresists", Polymer, Vol.43, No.4 pp. 1103-1113, (2002). https://doi.org/10.1016/S0032-3861(01)00672-3
  12. L. J. Bellamy, The Infra-red Spectra of Complex Molecules, 4th ed., John Wiley & Sons, Inc., New York, (1966).
  13. C. J. Pouchert, J. Behnke, The Aldrich Library of 13C and 1H FT NMR Spectra, Vol.1, Aldrich Chemical Co. Inc., Milwaukee, (1993).
  14. J. L. Mann, A. K. Grosskopf, A. A. A. Smith, E. A. Appel, "Highly Branched Polydimethylacrylamide Copolymers as Functional Biomaterials", Biomacromolecules, Vol.22, No.1 pp. 86-93, (2021). https://doi.org/10.1021/acs.biomac.0c00539
  15. Y. H. Fu, C. Perales, T. Eliason, D. E. Bergbreiter, "110th Anniversary: Reversible Solubilization of Polar Polymers and Polymeric Catalysts in Nonpolar Solvents", Industrial & Engineering Chemistry Research, Vol.58, No.31 pp. 14579-14587, (2019). https://doi.org/10.1021/acs.iecr.9b02373
  16. A. Paknejad, R. Mohammadkhani, H. Zarei, "Experimental High-Temperature, High-Pressure Density Measurement and Perturbed-Chain Statistical Associating Fluid Theory Modeling of Dimethyl Sulfoxide, Isoamyl Acetate, and Benzyl Alcohol", Journal of Chemical and Engineering Data, Vol.64, No.12 pp. 5174-5184, (2019). https://doi.org/10.1021/acs.jced.9b00396
  17. G. M. Tow, E. J. Maginn, "Fully Atomistic Molecular Dynamics Simulations of Hydroxyl-Terminated Polybutadiene with Insights into Hydroxyl Aggregation", Macromolecules, Vol.53, No.7 pp. 2594-2605, (2020). https://doi.org/10.1021/acs.macromol.9b02632
  18. Y. Zhang, L. Yuan, F. Chen, A. J. Gu, G. Z. Liang, "Cure kinetics of cyanate ester resin using microencapsulated dibutyltin dilaurate as catalyst", Polymer Bulletin, Vol.74, No.4 pp. 1011-1030, (2017). https://doi.org/10.1007/s00289-016-1760-x
  19. H. S. Park, D. J. Chung, H. S. Hahm, S. K. Kim, W. B. Im, S. J. Kim, "Preparation and physical properties of weather resistant silicone/acrylic resin coatings", Journal of Chemical Engineering of Japan, Vol.37, No.2 pp. 158-165, (2004). https://doi.org/10.1252/jcej.37.158
  20. Y. M. Boiko, "Statistical adhesion strength of an amorphous polymer-its miscible blend interface self-healed at a temperature below the bulk glass transition temperature", Journal of Adhesion, Vol.96, No.8 pp. 760-775, (2020). https://doi.org/10.1080/00218464.2018.1512412