DOI QR코드

DOI QR Code

SARS-CoV-2 Delta (B.1.617.2) Variant: A Unique T478K Mutation in Receptor Binding Motif (RBM) of Spike Gene

  • Hyunjhung Jhun (Technical Assistance Center, Korea Food Research Institute) ;
  • Ho-Young Park (Research group of Functional Food Materials, Korea Food Research Institute) ;
  • Yasmin Hisham (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Chang-Seon Song (College of Veterinary Medicine, Konkuk University) ;
  • Soohyun Kim (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University)
  • Received : 2021.08.24
  • Accepted : 2021.09.29
  • Published : 2021.10.31

Abstract

Over two hundred twenty-eight million cases of coronavirus disease 2019 (COVID-19) in the world have been reported until the 21st of September 2021 after the first rise in December 2019. The virus caused the disease called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 4 million deaths blame COVID-19 during the last one year and 8 months in the world. Currently, four SARS-CoV-2 variants of concern are mainly focused by pandemic studies with limited experiments to translate the infectivity and pathogenicity of each variant. The SARS-CoV-2 α, β, γ, and δ variant of concern was originated from United Kingdom, South Africa, Brazil/Japan, and India, respectively. The classification of SARS-CoV-2 variant is based on the mutation in spike (S) gene on the envelop of SARS-CoV-2. This review describes four SARS-CoV-2 α, β, γ, and δ variants of concern including SARS-CoV-2 ε, ζ, η, ι, κ, and B.1.617.3 variants of interest and alert. Recently, SARS-CoV-2 δ variant prevails over different countries that have 3 unique mutation sites: E156del/R158G in the N-terminal domain and T478K in a crucial receptor binding domain. A particular mutation in the functional domain of the S gene is probably associated with the infectivity and pathogenesis of the SARS-CoV-2 variant.

Keywords

Acknowledgement

This paper was written as part of Konkuk University's research support program for its faculty on sabbatical leave in 2022. This work was supported by National Research Foundation of Korea (NRF-2021R1F1A1057397). This research was supported by Main Research Program (E0210503-01) of the Korea Food Research Institute (KFRI) funded by the Ministry of Science and ICT.

References

  1. Brown CM, Vostok J, Johnson H, Burns M, Gharpure R, Sami S, Sabo RT, Hall N, Foreman A, Schubert PL, et al. Outbreak of SARS-CoV-2 infections, including COVID-19 vaccine breakthrough infections, associated with large public gatherings - Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep 2021;70:1059-1062. https://doi.org/10.15585/mmwr.mm7031e2
  2. Dagpunar J. Interim estimates of increased transmissibility, growth rate, and reproduction number of the COVID-19 B.1.617.2 variant of concern in the United Kingdom. medRxiv 2021. doi: 10.1101/2021.06.03.21258293. 
  3. Liu Y, Rocklov J. The reproductive number of the delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021:taab124.
  4. Li B, Deng A, Li K, Hu Y, Li Z, Xiong Q, Liu Z, Guo Q, Zou L, Zhang H, et al. Viral infection and transmission in a large, well-traced outbreak caused by the SARS-CoV-2 delta variant. medRxiv 2021. doi: 10.1101/2021.07.07.21260122.
  5. Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, Lim YD, Lee PH, Lee TH, Chia PY, et al. Clinical and virological features of SARS-CoV-2 variants of concern: a retrospective cohort study comparing B.1.1.7 (alpha), B.1.315 (beta), and B.1.617.2 (delta). Clin Infect Dis 2021:ciab721.
  6. Riemersma KK, Grogan BE, Kita-Yarbro A, Halfmann PJ, Segaloff HE, Kocharian A, Florek KR, Westergaard R, Bateman A, Jeppson GE, et al. Shedding of infectious SARS-CoV-2 despite vaccination. medRxiv 2021. doi: 10.1101/2021.07.31.21261387.
  7. Shi Q, Dong XP. Rapid global spread of the SARS-CoV-2 delta (B.1.617.2) variant: spatiotemporal variation and public health impact. Zoonoses 2021;1:1-6. https://doi.org/10.3390/zoonoses1010001
  8. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (delta) variant. N Engl J Med 2021;385:585-594. https://doi.org/10.1056/NEJMoa2108891
  9. Sheikh A, McMenamin J, Taylor B, Robertson C; Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021;397:2461-2462. https://doi.org/10.1016/S0140-6736(21)01358-1
  10. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003;426:450-454. https://doi.org/10.1038/nature02145
  11. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020;525:135-140. https://doi.org/10.1016/j.bbrc.2020.02.071
  12. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-220. https://doi.org/10.1038/s41586-020-2180-5
  13. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581:221-224. https://doi.org/10.1038/s41586-020-2179-y
  14. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018;14:e1007236.
  15. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263. https://doi.org/10.1126/science.abb2507
  16. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444-1448. https://doi.org/10.1126/science.abb2762
  17. Yuan M, Wu NC, Zhu X, Lee CD, So RT, Lv H, Mok CK, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020;368:630-633. https://doi.org/10.1126/science.abb7269
  18. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 2017;8:15092.
  19. Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 vaccines. JAMA 2021;325:1318-1320. https://doi.org/10.1001/jama.2021.3199
  20. Hong J, Jhun H, Choi YO, Taitt AS, Bae S, Lee Y, Song CS, Yeom SC, Kim S. Structure of SARS-CoV-2 spike glycoprotein for therapeutic and preventive target. Immune Netw 2021;21:e8.
  21. Kim S, Lee JH, Lee S, Shim S, Nguyen TT, Hwang J, Kim H, Choi YO, Hong J, Bae S, et al. The progression of SARS coronavirus 2 (SARS-CoV2): mutation in the receptor binding domain of spike gene. Immune Netw 2020;20:e41.
  22. Martinez-Flores D, Zepeda-Cervantes J, Cruz-Resendiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 vaccines based on the spike glycoprotein and implications of new viral variants. Front Immunol 2021;12:701501.
  23. Kim B, Lee Y, Kim E, Kwak A, Ryoo S, Bae SH, Azam T, Kim S, Dinarello CA. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol 2013;4:391.
  24. Kwak A, Lee Y, Kim H, Kim S. Intracellular interleukin (IL)-1 family cytokine processing enzyme. Arch Pharm Res 2016;39:1556-1564. https://doi.org/10.1007/s12272-016-0855-0
  25. Lee S, Kim E, Jhun H, Hong J, Kwak A, Jo S, Bae S, Lee J, Kim B, Lee J, et al. Proinsulin shares a motif with interleukin-1α (IL-1α) and induces inflammatory cytokine via interleukin-1 receptor 1. J Biol Chem 2016;291:14620-14627. https://doi.org/10.1074/jbc.M116.731026
  26. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864-1868. https://doi.org/10.1126/science.1116480
  27. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  28. Chen RE, Winkler ES, Case JB, Aziati ID, Bricker TL, Joshi A, Darling TL, Ying B, Errico JM, Shrihari S, et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature 2021;596:103-108. https://doi.org/10.1038/s41586-021-03720-y
  29. Taylor PC, Adams AC, Hufford MM, de la Torre I, Winthrop K, Gottlieb RL. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev Immunol 2021;21:382-393. https://doi.org/10.1038/s41577-021-00542-x
  30. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020;369:77-81. https://doi.org/10.1126/science.abc1932
  31. Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, Himansu S, Schafer A, Ziwawo CT, DiPiazza AT, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586:567-571. https://doi.org/10.1038/s41586-020-2622-0
  32. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, Bellamy D, Bibi S, Bittaye M, Clutterbuck EA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-478. https://doi.org/10.1016/S0140-6736(20)31604-4
  33. Frater J, Ewer KJ, Ogbe A, Pace M, Adele S, Adland E, Alagaratnam J, Aley PK, Ali M, Ansari MA, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial. Lancet HIV 2021;8:e474-e485. https://doi.org/10.1016/S2352-3018(21)00103-X
  34. Hassan AO, Kafai NM, Dmitriev IP, Fox JM, Smith BK, Harvey IB, Chen RE, Winkler ES, Wessel AW, Case JB, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 2020;183:169-184.e13.  https://doi.org/10.1016/j.cell.2020.08.026
  35. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 2020;383:2320-2332. https://doi.org/10.1056/NEJMoa2026920
  36. Wang J. New strategy for COVID-19 vaccination: targeting the receptor-binding domain of the SARS-CoV-2 spike protein. Cell Mol Immunol 2021;18:243-244. https://doi.org/10.1038/s41423-020-00584-6
  37. Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020;586:572-577. https://doi.org/10.1038/s41586-020-2599-8
  38. Arif TB. The 501.V2 and B.1.1.7 variants of coronavirus disease 2019 (COVID-19): a new time-bomb in the making? Infect Control Hosp Epidemiol 2021:1-2.
  39. Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CA, Russell TW, Tully DC, Washburne AD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021;372:eabg3055.
  40. Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE, Bennett H, Boyoglu-Barnum S, Shi W, Graham BS, et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 2021. doi: 10.1101/2021.01.25.427948.
  41. Barrett CT, Neal HE, Edmonds K, Moncman CL, Thompson R, Branttie JM, Boggs KB, Wu CY, Leung DW, Dutch RE. Effect of clinical isolate or cleavage site mutations in the SARS-CoV-2 spike protein on protein stability, cleavage, and cell-cell fusion. J Biol Chem 2021;297:100902.
  42. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009;106:5871-5876. https://doi.org/10.1073/pnas.0809524106
  43. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005;102:11876-11881. https://doi.org/10.1073/pnas.0505577102
  44. Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013;100:605-614. https://doi.org/10.1016/j.antiviral.2013.09.028
  45. Claro IM, da Silva Sales FC, Ramundo MS, Candido DS, Silva CA, de Jesus JG, Manuli ER, de Oliveira CM, Scarpelli L, Campana G, et al. Local transmission of SARS-CoV-2 lineage B.1.1.7, Brazil, December 2020. Emerg Infect Dis 2021;27:970-972. https://doi.org/10.3201/eid2703.210038
  46. Gidari A, Sabbatini S, Bastianelli S, Pierucci S, Busti C, Monari C, Luciani Pasqua B, Dragoni F, Schiaroli E, Zazzi M, et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. J Infect 2021;83:467-472. https://doi.org/10.1016/j.jinf.2021.07.019
  47. Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, Liu L, Kwong PD, Huang Y, Shapiro L, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. bioRxiv 2021. doi: 10.1101/2021.03.01.433466.
  48. Yadav PD, Nyayanit DA, Sahay RR, Sarkale P, Pethani J, Patil S, Baradkar S, Potdar V, Patil DY. Isolation and characterization of the new SARS-CoV-2 variant in travellers from the United Kingdom to India: VUI-202012/01 of the B.1.1.7 lineage. J Travel Med 2021;28:taab009.
  49. Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 2021;26:
  50. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, et al. Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization. Nature 2021;596:276-280. https://doi.org/10.1038/s41586-021-03777-9
  51. Chen LL, Lu L, Choi CY, Cai JP, Tsoi HW, Chu AW, Ip JD, Chan WM, Zhang RR, Zhang X, et al. Impact of SARS-CoV-2 variant-associated RBD mutations on the susceptibility to serum antibodies elicited by COVID-19 infection or vaccination. Clin Infect Dis 2021;ciab656.
  52. Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, Sotomayor-Gonzalez A, Glasner DR, Reyes KR, Gliwa AS, et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv 2021. doi: 10.1101/2021.03.07.21252647.
  53. Martin Webb L, Matzinger S, Grano C, Kawasaki B, Stringer G, Bankers L, Herlihy R. Identification of and surveillance for the SARS-CoV-2 variants B.1.427 and B.1.429 - Colorado, January-March 2021. MMWR Morb Mortal Wkly Rep 2021;70:717-718. https://doi.org/10.15585/mmwr.mm7019e2
  54. Ozer EA, Simons LM, Adewumi OM, Fowotade AA, Omoruyi EC, Adeniji JA, Dean TJ, Zayas J, Bhimalli PP, Ash MK, et al. Coincident rapid expansion of two SARS-CoV-2 lineages with enhanced infectivity in Nigeria. medRxiv 2021. doi: 10.1101/2021.04.09.21255206.
  55. Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, Gomez-Simmonds A, Kelley AL, Tagliavia M, Huang Y, et al. Emergence and expansion of the SARS-CoV-2 variant B.1.526 identified in New York. medRxiv 2021. doi: 10.1101/2021.02.23.21252259.
  56. Collier DA, De Marco A, Ferreira IATM, Meng B, Datir RP, Walls AC, Kemp SA, Bassi J, Pinto D, Silacci-Fregni C, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021;593:136-141. https://doi.org/10.1038/s41586-021-03412-7
  57. Emary KR, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, Blane B, Bonsall D, Cicconi P, Charlton S, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 2021;397:1351-1362. https://doi.org/10.1016/S0140-6736(21)00628-0
  58. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130-135. https://doi.org/10.1038/s41586-021-03398-2
  59. Jangra S, Ye C, Rathnasinghe R, Stadlbauer D; Personalized Virology Initiative study group. Krammer F, Simon V, Martinez-Sobrido L, Garcia-Sastre A, Schotsaert M, et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021;2:e283-e284. https://doi.org/10.1016/S2666-5247(21)00068-9
  60. Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY, Bloom JD. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 2021;29:463-476.e6. https://doi.org/10.1016/j.chom.2021.02.003
  61. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, Tortorici MA, Navarro MJ, Silacci-Fregni C, Saliba C, et al. SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 2021;373:648-654. https://doi.org/10.1126/science.abi7994
  62. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall 2017;1:33-46. https://doi.org/10.1002/gch2.1018
  63. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, Nutalai R, Zhou D, Mentzer AJ, Zhao Y, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021;184:4220-4236.e13. https://doi.org/10.1016/j.cell.2021.06.020