DOI QR코드

DOI QR Code

Partial Electrode Configuration as a Tool for the Precise Determination of Losses and Physical Parameters of Piezoceramics

  • Park, Yoonsang (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University) ;
  • Choi, Minkyu (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University) ;
  • Daneshpajooh, Hossein (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University) ;
  • Scholehwar, Timo (R & D Department, PI Ceramic GmbH, Lindenstrasse) ;
  • Hennig, Eberhard (R & D Department, PI Ceramic GmbH, Lindenstrasse) ;
  • Uchino, Kenji (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University)
  • Received : 2021.03.30
  • Accepted : 2021.04.12
  • Published : 2021.05.01

Abstract

IEEE Standard on Piezoelectricity has been utilized for decades though it has shown significant issues that prevent researchers from obtaining accurate materials coefficients. To resolve these issues, our research group recently proposed partial electrode (PE) method. PE method utilizes samples that consist of the center part covered with electrode, and the side part either covered or not covered with electrode for obtaining both intensive and extensive elastic parameters. In this review, we introduce our PE method, along with physical phenomenology and background, such as issues of IEEE standard, to bolster readers understanding of needs for developing new measurement method that can compensate the standard method. It is shown that development of the PE method not only provides technological benefits, but also gives scientific importance for the piezoelectric research community from its extremely high data accuracy.

Keywords

Acknowledgement

This work was supported by Office of Naval Research with Grant Number N00014-17-1-2088 and N00014-20-1-2039.

References

  1. A. Abdullah, M. Shahini, and A. Pak, J. Electroceram., 22, 369 (2009). [DOI: https://doi.org/10.1007/s10832-007-9408-8]
  2. X. Dong, T. Yuan, M. Hu, H. Shekhani, Y. Maida, T. Tou, and K. Uchino, Rev. Sci. Instrum., 87, 105003 (2016). [DOI: https://doi.org/10.1063/1.4963920]
  3. S. Hirose, M. Aoyagi, and Y. Tomikawa, Jpn. J. Appl. Phys., 32, 2418 (1993). [DOI: https://doi.org/10.1143/jjap.32.2418]
  4. A. Iula, F. Vazquez, M. Pappalardo, and J. A. Gallego, Ultrasonics, 40, 513 (2002). [DOI: https://doi.org/10.1016/s0041-624x(02)00174-9]
  5. O. D. Kwon, J. S. Yoo, Y. J. Yun, J. S. Lee, S. H. Kang, and K. J. Lim, Proc. 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005) (IEEE, Kitakyushu, Japan, 2005) p. 676. [DOI: https://doi.org/10.1109/iseim.2005.193460]
  6. H. P. Ko, H. Jeong, and B. Koc, J. Electroceram., 23, 530 (2009). [DOI: https://doi.org/10.1007/s10832-008-9529-8]
  7. D. S. Paik, K. H. Yoo, C. Y. Kang, B. H. Cho, S. Nam, and S. J. Yoon, J. Electroceram., 22, 346 (2009). [DOI: https://doi.org/10.1007/s10832-008-9513-3]
  8. Y. Zhang, R. Zheng, K. Shimono, T. Kaizuka, and K. Nakano, Sensors, 16, 1727 (2016). [DOI: https://doi.org/10.3390/s16101727]
  9. S.T.A. Hamdani and A. Fernando, Sensors, 15, 7742 (2015). [DOI: https://doi.org/10.3390/s150407742]
  10. C. Sugino and A. Erturk, J. Phys. D: Appl. Phys., 51, 215103 (2018). [DOI: https://doi.org/10.1088/1361-6463/aab97e]
  11. S. Priya, H. C. Song, Y. Zhou, R. Varghese, A. Chopra, S. G. Kim, I. Kanno, L. Wu, D. S. Ha, J. Ryu, and R. G. Polcawich, Energy Harvesting Syst., 4, 3 (2019). [DOI: https://doi.org/10.1515/ehs-2016-0028]
  12. H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). [DOI: https://doi.org/10.1007/s12541-011-0151-3]
  13. Battery Market, Growth, Trends, COVID-19 Impact, and Forecasts (2021 - 2026) https://www.mordorintelligence.com/industry-reports/global-battery-market-industry (2019, Accessed March 29th 2021).
  14. J. Zheng, S. Takahashi, S. Yoshikawa, K. Uchino, and J.W.C. de Vries, J. Am. Ceram. Soc., 79, 3193 (1996). [DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08095.x]
  15. Y. H. Su, Y. P. Liu, D. Vasic, W. J. Wu, F. Costa, and C. K. Lee, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 2129 (2012). [DOI: https://doi.org/10.1109/tuffc.2012.2439]
  16. S. O. Ural, S. Tuncdemir, Y. Zhuang, and K. Uchino, Jpn. J. Appl. Phys., 48, 056509 (2009). [DOI: https://doi.org/10.1143/jjap.48.056509]
  17. S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 361 (2003). [DOI: https://doi.org/10.1109/tuffc.2003.1197958]
  18. Y. Park, M. Majzoubi, Y. Zhang, T. Scholehwar, E. Hennig, and K. Uchino, J. Appl. Phys., 127, 204102 (2020). [DOI: https://doi.org/10.1063/1.5143728]
  19. E. Heinonen, J. Juuti, and S. Leppavuori, J. Eur. Ceram. Soc., 25, 2467 (2005). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.083]
  20. M. Majzoubi, H. N. Shekhani, A. Bansal, E. Hennig, T. Scholehwar, and K. Uchino, J. Appl. Phys., 120, 225113 (2016). [DOI: https://doi.org/10.1063/1.4971340]
  21. Y. Park, Y. Zhang, M. Majzoubi, T. Scholehwar, E. Hennig, and K. Uchino, Sens. Actuators, A, 312, 112124 (2020). [DOI: https://doi.org/10.1016/j.sna.2020.112124]
  22. M. Nic, J. Jirat, and B. Kosata, Compendium of Chemical Terminology, International Union of Pure and Applied Chemistry (IUPAC) (2014) p. 542, p. 740.
  23. T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 1990) pp. 54-82.
  24. K. Uchino, Advanced Piezoelectric Materials, Elsevier (Woodhead Publishing, Cambridge, UK, 2017) p. 647. [DOI: https://doi. org/10.1016/b978-0-08-102135-4.00017-5]
  25. D. J. Griffiths, Introduction to Electrodynamics, 4th ed. (Cambridge University Press, Cambridge, UK, 2017) pp. 167-202. [DOI: https://doi.org/10.1017/9781108333511]
  26. V. Ostasevicius, I. Milasauskaite, R. Dauksevicius, V. Baltrusaitis, V. Grigaliunas, and I. Prosycevas, Mechanics, 86, 78 (2010).
  27. G. M. Sessler and A. Berraissoul, IEEE Trans. Electr. Insul., 24, 249 (1989). [DOI: https://doi.org/10.1109/14.90283]
  28. Y. Zhuang, S. O. Ural, S. Tuncdemir, A. Amin, and K. Uchino, Jpn. J. Appl. Phys., 49, 021503 (2010). [DOI: https://doi.org/10.1143/jjap.49.021503]
  29. H. Daneshpajooh, H. N. Shekhani, M. Choi, and K. Uchino, J. Am. Ceram. Soc., 101, 1940 (2018). [DOI: https://doi.org/10.1111/jace.15338]
  30. K. Uchino, Y. Zhuang, and S. O. Ural, J. Adv. Dielectr., 1, 17 (2011). [DOI: https://doi.org/10.1142/s2010135x11000033]
  31. A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, IEEE Standard on Piezoelectricity (IEEE Ultrasound, Ferroelectrics and Frequency Control Society, New York, USA, 1988) pp. 29-63.
  32. A. V. Mezheritsky, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49, 484 (2002). [DOI: https://doi.org/10.1109/58.996567]
  33. Y. Zhuang, S. O. Ural, and K. Uchino, Ferroelectrics, 470, 260 (2014). [DOI: https://doi.org/10.1080/00150193.2014.923727]
  34. M. Choi, Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Ceram. Int., (In press, 2021). [DOI: https://doi.org/10.1016/j.ceramint.2021.02.210]
  35. H. Cao, V. H. Schmidt, R. Zhang, W. Cao, and H. Luo, J. Appl. Phys., 96, 549 (2004). [DOI: https://doi.org/10.1063/1.1712020]
  36. R. Zhang, B. Jiang, and W. Cao, Appl. Phys. Lett., 82, 787 (2003). [DOI: https://doi.org/10.1063/1.1541937]
  37. Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Physical Parameter and Loss Determination Using Partial Electrode: k31 and k33 Mode Cases, ArXiv e-Print (2020).
  38. Y. Shindo, F. Narita, and M. Hirama, Smart Mater. Struct., 18, 085020 (2009). [DOI: https://doi.org/10.1088/0964-1726/18/8/085020]
  39. P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, Jpn. J. Appl. Phys., 41, 1446 (2002). [DOI: https://doi.org/10.1143/jjap.41.1446]
  40. C. A. Rosen, Ph.D. Dissertation, Analysis and Design of Ceramic Transformers and Filter Elements, Syracuse University, New York (1956).
  41. E. M. Syed, F. P. Dawson, and E. S. Rogers, Proc. 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230) (IEEE, Vancouver, Canada, 2001) p. 1761. [DOI: https://doi.org/10.1109/pesc.2001.954377]
  42. H. Xue, J. Yang, and Y. Hu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 1632 (2008). [DOI: https://doi.org/10.1109/tuffc.2008.837]
  43. G. L. Smith, R. Q. Rudy, R. G. Polcawich, and D. L. DeVoe, Sens. Actuators, A, 188, 305 (2012). [DOI: https://doi.org/10.1016/j.sna.2011.12.029]
  44. A. Ando, T. Kittaka, Y. Sakabe, and S. Fujishima, EnergyTrapping-Type Piezoelectric Resonance Device, Google Patents, 1990.
  45. Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C.E.M. Demore, S. Cochran, S. Trolier-McKinstry, Sensors, 15, 8020 (2015). [DOI: https://doi.org/10.3390/s150408020]
  46. S. W. Bartky, A. D. Paton, S. Temple, and J. A. Michaelis, Pulsed Droplet Deposition Apparatus Using Unpoled Crystalline Shear Mode Actuator, Google Patents, 1991.
  47. Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Appl. Mater. Today, 23, 101020 (2021). [DOI: https://doi.org/10.1016/j.apmt.2021.101020]