DOI QR코드

DOI QR Code

A Brief Review on Magnetoelectric Multiferroic Oxides

  • Cho, Jae-Hyeon (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jo, Wook (Department of Materials Science and Engineering & Julich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2021.04.05
  • Accepted : 2021.04.07
  • Published : 2021.05.01

Abstract

Magnetoelectric multiferroics, where a ferromagnetic and a ferroelectric order coexist and are coupled in a single phase, have been a hot topic in condensed matter physics for a long time owing to their ability to facilitate next-generation applications. In this review, we briefly introduce basic concept of the magnetoelectric multiferroic oxides as well as their history, physical origins, and significant achievements. The key moments contributing to the progress of magnetoelectric multiferroics are snapshotted chronologically, and then a discussion on the major magnetic exchange interactions and the ferroelectric origins are presented along with their coupling behavior. Furthermore, we argue a need for modifying the present classification of magnetoelectric multiferroics before presenting the evolution of multiferroics using representative examples with their properties such as magnetic/ferroelectric transition temperature, magnetization/electric polarization, and magnetoelectric coefficient. We hope that this brief review will provide the community researchers with insights into magnetoelectric multiferroic oxides.

Keywords

Acknowledgement

This research was supported by the Leading Foreign Research Institute Recruitment Program (No.2017K1A4A3015437) through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT and the 2021 Research Fund (1.210035.01) of UNIST (Ulsan National Institute of Science and Technology).

References

  1. M. Sugimoto, J. Am. Ceram. Soc., 82, 269 (1999). [DOI: https://doi.org/10.1111/j.1551-2916.1999.tb20058.x]
  2. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x]
  3. A. Humer, A. S. Pechstein, M. Meindlhumer, and M. Krommer, Acta Mech., 231, 2521 (2020). [DOI: https://doi.org/10.1007/s00707-020-02657-z]
  4. J. Jang, G. T. Hwang, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, Y. Jung, and W. H. Yoon, J. Korean Ceram. Soc., 57, 645 (2020). [DOI: https://doi.org/10.1007/s43207-020-00062-9]
  5. H. Kim, C. Sohn, G. T. Hwang, K. I. Park, and C. K. Jeong, J. Korean Ceram. Soc., 57, 401 (2020). [DOI: https://doi.org/10.1007/s43207-020-00038-9]
  6. M. H. Park, J. M. Park, and C. H. Song, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 276 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.4.276]
  7. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003). [DOI: https://doi.org/10.1126/science.1080615]
  8. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55 (2003). [DOI: https://doi.org/10.1038/nature02018]
  9. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature, 429, 392 (2004). [DOI: https://doi.org/10.1038/nature02572]
  10. J. F. Scott, Nat. Mater., 6, 256 (2007). [DOI: https://doi.org/10.1038/nmat1868]
  11. M. Bibes and A. Barthelemy, Nat. Mater., 7, 425 (2008). [DOI: https://doi.org/10.1038/nmat2189]
  12. S. Manipatruni, D. E. Nikonov, C. C. Lin, T. A. Gosavi, H. Liu, B. Prasad, Y. L. Huang, E. Bonturim, R. Ramesh, and I. A. Young, Nature, 565, 35 (2019). [DOI: https://doi.org/10.1038/s41586-018-0770-2]
  13. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, and S. W. Cheong, Science, 324, 63 (2009). [DOI: https://doi.org/10.1126/science.1168636]
  14. H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. W. Cheong, Adv. Mater., 23, 3403 (2011). [DOI: https://doi.org/10.1002/adma.201100805]
  15. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei, Nat. Photonics, 9, 61 (2014). [DOI: https://doi.org/10.1038/nphoton.2014.255]
  16. A. Nagesetti, A. Rodzinski, E. Stimphil, T. Stewart, C. Khanal, P. Wang, R. Guduru, P. Liang, I. Agoulnik, J. Horstmyer, and S. Khizroev, Sci. Rep., 7, 1610 (2017). [DOI: https://doi.org/10.1038/s41598-017-01647-x]
  17. E. Stimphil, A. Nagesetti, R. Guduru, T. Stewart, A. Rodzinski, P. Liang, and S. Khizroev, Appl. Phys. Rev., 4, 021101 (2017). [DOI: https://doi.org/10.1063/1.4978642]
  18. G. T. Hwang, M. Byun, C. K. Jeong, and K. J. Lee, Adv. Healthcare Mater., 4, 646 (2015). [DOI: https://doi.org/10.1002/adhm.201400642]
  19. R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, and S. Khizroev, Sci. Rep., 3, 2953 (2013). [DOI: https://doi.org/10.1038/srep02953]
  20. M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, and S. Khizroev, Nat. Commun., 4, 1707 (2013). [DOI: https://doi.org/10.1038/ncomms2717]
  21. J.M.D. Coey, Nat. Mater., 18, 652 (2019). [DOI: https://doi.org/10.1038/s41563-019-0365-9]
  22. J. M. Rondinelli, A. S. Eidelson, and N. A. Spaldin, Phys. Rev. B, 79, 205119 (2009). [DOI: https://doi.org/10.1103/physrevb.79.205119]
  23. W. C. Rontgen, Ann. Phys., 271, 264 (1888). [DOI: https://doi.org/10.1002/andp.18882711003]
  24. P. Curie, J. Phys. Theor. Appl., 3, 393 (1894). [DOI: https://doi.org/10.1051/jphystap:018940030039300]
  25. P. Debye, Z. Phys., 36, 300 (1926). [DOI: https://doi.org/10.1007/bf01557844]
  26. H. Schmid, Ferroelectrics, 162, 317 (1994). [DOI: https://doi.org/10.1080/00150199408245120]
  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd (Elsevier Ltd., New York, 1960) p. 224. [DOI: https://doi.org/10.1016/b978-0-08-030275-1.50013-8]
  28. I. E. Dzyaloshinskii, Sov. Phys. JETP, 10, 628 (1960).
  29. D. N. Astrov, Sov. Phys. JETP, 11, 708 (1960).
  30. V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev. Lett., 6, 607 (1961). [DOI: https://doi.org/10.1103/physrevlett.6.607]
  31. J. Van Suchtelen, Phillips Research Reports, 27, 28 (1972).
  32. N. A. Hill, J. Phys. Chem. B, 104, 6694 (2000). [DOI: https://doi.org/10.1021/jp000114x]
  33. J. F. Scott, NPG Asia Mater., 5, e72 (2013). [DOI: https://doi.org/10.1038/am.2013.58]
  34. M. P. Singh, K. D. Truong, S. Jandl, and P. Fournier, J. Appl. Phys., 107, 09D917 (2010). [DOI: https://doi.org/10.1063/1.3362922]
  35. P. G. Radaelli, D. E. Cox, M. Marezio, and S. W. Cheong, Phys. Rev. B, 55, 3015 (1997). [DOI: https://doi.org/10.1103/physrevb.55.3015]
  36. J. H. Lee, P. Murugavel, H. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M. H. Jung, Y. H. Oh, Y. W. Kim, J. G. Yoon, J. S. Chung, and T. W. Noh, Adv. Mater., 18, 3125 (2006). [DOI: https://doi.org/10.1002/adma.200601621]
  37. J. H. Lee, K. T. Delaney, E. Bousquet, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B, 88, 174426 (2013). [DOI: https://doi.org/10.1103/physrevb.88.174426]
  38. B. B. Van Aken, T.T.M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater., 3, 164 (2004). [DOI: https://doi.org/10.1038/nmat1080]
  39. Y. S. Oh, X. Luo, F. T. Huang, Y. Wang, and S. W. Cheong, Nat. Mater., 14, 407 (2015). [DOI: https://doi.org/10.1038/nmat4168]
  40. S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett., 104, 022907 (2014). [DOI: https://doi.org/10.1063/1.4862432]
  41. Y. Kitagawa, Y. Hiraoka, T. Honda, T. Ishikura, H. Nakamura, and T. Kimura, Nat. Mater., 9, 797 (2010). [DOI: https://doi.org/10.1038/nmat2826]
  42. I. Kim, Y. S. Oh, Y. Liu, S. H. Chun, J. S. Lee, K. T. Ko, J. H. Park, J. H. Chung, and K. H. Kim, Appl. Phys. Lett., 94, 042505 (2009). [DOI: https://doi.org/10.1063/1.3076102]
  43. Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, and Y. Tokura, Phys. Rev. Lett., 96, 207204 (2006). [DOI: https://doi.org/10.1103/physrevlett.96.207204]
  44. A. Sundaresan and N. V. Ter-Oganessian, J. Appl. Phys., 129, 060901 (2021). [DOI: https://doi.org/10.1063/5.0035825]
  45. D. Feng, Z. Zhu, X. Chen, and J. Qi, Appl. Phys. Lett., 118, 062903 (2021). [DOI: https://doi.org/10.1063/5.0036302]
  46. C. Liu, B. Wang, G. Jia, P. Liu, H. Yin, S. Guan, and Z. Cheng, Appl. Phys. Lett., 118, 072902 (2021). [DOI: https://doi.org/10.1063/5.0039842]
  47. L. Zhao, T. L. Hung, C. C. Li, Y. Y. Chen, M. K. Wu, R. K. Kremer, M. G. Banks, A. Simon, M. H. Whangbo, C. Lee, J. S. Kim, I. Kim, and K. H. Kim, Adv. Mater., 24, 2469 (2012). [DOI: https://doi.org/10.1002/adma.201200734]
  48. J. F. Scott and R. Blinc, J. Phys.: Condens. Matter, 23, 113202 (2011). [DOI: https://doi.org/10.1088/0953-8984/23/11/113202]
  49. D. Khomskii, Physics, 2, 20 (2009). [DOI: https://doi.org/10.1103/physics.2.20]
  50. S. W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena, npj Quantum Mater., 3, 19 (2018). [DOI: https://doi.org/10.1038/s41535-018-0092-5]
  51. H. Xiang, C. Lee, H. J. Koo, X. Gong, and M. H. Whangbo, Dalton Trans., 42, 823 (2013). [DOI: https://doi.org/10.1039/c2dt31662e]
  52. C. Zener and R. R. Heikes, Rev. Mod. Phys., 25, 191 (1953). [DOI: https://doi.org/10.1103/revmodphys.25.191.2]
  53. P. W. Anderson, Solid State Phys., 14, 99 (1963). [DOI: https://doi.org/10.1016/s0081-1947(08)60260-x]
  54. E. Coronado, B. S. Tsukerblat, and R. Georges, Exchange Interactions I: Mechanisms (Springer, Dordrecht, 1996) p. 65. [DOI: https://doi.org/10.1007/978-94-017-2319-0_3]
  55. J. Kanamori, J. Phys. Chem. Solids, 10, 87 (1959). [DOI: https://doi.org/10.1016/0022-3697(59)90061-7]
  56. M. A. Gilleo, Phys. Rev., 109, 777 (1958). [DOI: https://doi.org/10.1103/physrev.109.777]
  57. J. B. Goodenough, J. Solid State Chem., 127, 126 (1996). [DOI: https://doi.org/10.1006/jssc.1996.0366]
  58. I. Dzyaloshinsky, J. Phys. Chem. Solids, 4, 241 (1958). [DOI: https://doi.org/10.1016/0022-3697(58)90076-3]
  59. T. Moriya, Phys. Rev. Lett., 4, 228 (1960). [DOI: https://doi.org/10.1103/physrevlett.4.228]
  60. G. H. Jonker and J. H. Van Santen, Physica, 16, 337 (1950). [DOI: https://doi.org/10.1016/0031-8914(50)90033-4]
  61. C. Zener, Phys. Rev., 82, 403 (1951). [DOI: https://doi.org/10.1103/physrev.82.403 ]
  62. J. H. Van Santen and G. H. Jonker, Physica, 16, 599 (1950). [DOI: https://doi.org/10.1016/0031-8914(50)90104-2]
  63. C. Kittel, Phys. Rev., 120, 335 (1960). [DOI: https://doi.org/10.1103/physrev.120.335]
  64. D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys. Rev. Lett., 11, 10 (1963). [DOI: https://doi.org/10.1103/physrevlett.11.10]
  65. D. S. Rodbell and J. Owen, J. Appl. Phys., 35, 1002 (1964). [DOI: https://doi.org/10.1063/1.1713351]
  66. L. C. Bartel and B. Morosin, Phys. Rev. B, 3, 1039 (1971). [DOI: https://doi.org/10.1103/physrevb.3.1039]
  67. K. Motida, J. Phys. Soc. Jpn., 44, 1498 (1978). [DOI: https://doi.org/10.1143/jpsj.44.1498]
  68. J. Valasek, Phys. Rev., 17, 475 (1921). [DOI: https://doi.org/10.1103/physrev.17.475]
  69. N. A. Spaldin, J. Solid State Chem., 195, 2 (2012). [DOI: https://doi.org/10.1016/j.jssc.2012.05.010]
  70. J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, Prog. Mater. Sci., 84, 335 (2016). [DOI: https://doi.org/10.1016/j.pmatsci.2016.09.001]
  71. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti Jr., and J. Rodel, Appl. Phys. Rev., 4, 041305 (2017). [DOI: https://doi.org/10.1063/1.4990046]
  72. G. Li, Y. Liu, W. Wang, Y. Xiao, M. Tang, and Z. Li, Phys. Status Solidi B, 258, 2000520 (2020). [DOI: https://doi.org/10.1002/pssb.202000520]
  73. R. E. Cohen, J. Phys. Chem. Solids, 61, 139 (2000). [DOI: https://doi.org/10.1016/s0022-3697(99)00272-3]
  74. S. W. Cheong and M. Mostovoy, Nat. Mater., 6, 13 (2007). [DOI: https://doi.org/10.1038/nmat1804]
  75. M. Fiebig, T. Lottermoser, D. Meier, and M. Trassin, Nat. Rev. Mater., 1, 16046 (2016). [DOI: https://doi.org/10.1038/natrevmats.2016.46]
  76. D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett., 98, 217601 (2007). [DOI: https://doi.org/10.1103/physrevlett.98.217601]
  77. D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys, and J. A. Mydosh, J. Phys.: Condens. Matter., 13, 4543 (2001). [DOI: https://doi.org/10.1088/0953-8984/13/20/315]
  78. T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B, 66, 134434 (2002). [DOI: https://doi.org/10.1103/physrevb.66.134434]
  79. J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter., 20, 434217 (2008). [DOI: https://doi.org/10.1088/0953-8984/20/43/434217]
  80. K. Yamauchi and P. Barone, J. Phys.: Condens. Matter., 26, 103201 (2014). [DOI: https://doi.org/10.1088/0953-8984/26/10/103201]
  81. C. Ederer and N. A. Spaldin, Nat. Mater., 3, 849 (2004). [DOI: https://doi.org/10.1038/nmat1265]
  82. D. I. Khomskii, J. Magn. Magn. Mater., 306, 1 (2006). [DOI: https://doi.org/10.1016/j.jmmm.2006.01.238]
  83. M. Uehara, S. Mori, C. H. Chen, and S. W. Cheong, Nature, 399, 560 (1999). [DOI: https://doi.org/10.1038/21142]
  84. M. Mostovoy, Phys. Rev. Lett., 96, 067601 (2006). [DOI: https://doi.org/10.1103/physrevlett.96.067601]
  85. Y. Tokura and S. Seki, Adv. Mater., 22, 1554 (2010). [DOI: https://doi.org/10.1002/adma.200901961]
  86. Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys., 77, 076501 (2014). [DOI: https://doi.org/10.1088/0034-4885/77/7/076501]
  87. H. Schmid, Bull. Mater. Sci., 17, 1411 (1994). [DOI: https://doi.org/10.1007/bf02747238]
  88. M. J. Cardwell, Philos. Mag. A, 20, 1087 (1969). [DOI: https://doi.org/10.1080/14786436908228077]
  89. M. M. Vopson, Y. K. Fetisov, G. Caruntu, and G. Srinivasan, Materials, 10, 963 (2017). [DOI: https://doi.org/10.3390/ma10080963]
  90. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram., 8, 107 (2002). [DOI: https://doi.org/10.1023/a:1020599728432]
  91. N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and H. Kito, Nature, 436, 1136 (2005). [DOI: https://doi.org/10.1038/nature04039]
  92. C. H. Li, F. Wang, Y. Liu, X. Q. Zhang, Z. H. Cheng, and Y. Sun, Phys. Rev. B, 79, 172412 (2009). [DOI: https://doi.org/10.1103/physrevb.79.172412]
  93. D. I. Khomskii, Nat. Commun., 3, 904 (2012). [DOI: https://doi.org/10.1038/ncomms1904]
  94. T. Aoyama, K. Yamauchi, A. Iyama, S. Picozzi, K. Shimizu, and T. Kimura, Nat. Commun., 5, 4927 (2014). [DOI: https://doi.org/10.1038/ncomms5927]
  95. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett., 95, 057205 (2005). [DOI: https://doi.org/10.1103/physrevlett.95.057205]
  96. Q. F. Sun and X. C. Xie, Phys. Rev. B, 72, 245305 (2005). [DOI: https://doi.org/10.1103/physrevb.72.245305]
  97. J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett., 96, 076604 (2006). [DOI: https://doi.org/10.1103/physrevlett. 96.076604]
  98. H. Palneedi, V. Annapureddy, S. Priya, and J. Ryu, Actuators, 5, 1 (2016). [DOI: https://doi.org/10.3390/act5010009]
  99. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001). [DOI: https://doi.org/10.1143/jjap.40.4948]
  100. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys., 103, 031101 (2008). [DOI: https://doi.org/10.1063/1.2836410]
  101. W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, J. Phy s. Chem. C, 115, 8869 (2011). [DOI: https://doi.org/10.1021/jp1103142]
  102. G. S. Lotey and N. K. Verma, Mater. Lett., 111, 55 (2013). [DOI: https://doi.org/10.1016/j.matlet.2013.08.022]
  103. F. Zhang, X. Zeng, D. Bi, K. Guo, Y. Yao, and S. Lu, Materials, 11, 2208 (2018). [DOI: https://doi.org/10.3390/ma11112208]
  104. A. Kumar, S. Saini, K. L. Yadav, N. Kumar, S. Kumar, and S. Singh, J. Mater. Sci.: Mater. Electron., 31, 15079 (2020). [DOI: https://doi.org/10.1007/s10854-020-04071-6]
  105. T. Lim, O. S. Jeon, Y. La, S. Y. Park, Y. J. Yoo, and K. H. Yang, J. Korean Phys. Soc., 77, 1021 (2020). [DOI: https://doi.org/10.3938/jkps.77.1021]
  106. T. Pikula, J. Dzik, P. Guzdek, M. Kowalczyk, K. Siedliska, and E. Jartych, Ceram. Int., 46, 1804 (2020). [DOI: https://doi.org/10.1016/j.ceramint.2019.09.155]
  107. T. K. Lin, H. W. Chang, B. A. Chen, D. H. Wei, C. R. Wang, and C. S. Tu, Surf. Coat. Technol., 393, 125728 (2020). [DOI: https://doi.org/10.1016/j.surfcoat.2020.125728]
  108. T. K. Lin, H. W. Chang, Y. H. Sung, C. R. Wang, D. H. Wei, C. S. Tu, and W. C. Chang, Mater. Lett., 276, 128216 (2020). [DOI: https://doi.org/10.1016/j.matlet.2020.128216]
  109. H. Bai, J. Li, Y. Hong, and Z. Zhou, J. Adv. Ceram., 9, 511 (2020). [DOI: https://doi.org/10.1007/s40145-020-0384-7]
  110. B. S. Kar, M. N. Goswami, and P. C. Jana, J. Alloys Compd., 861, 157960 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2020.157960]
  111. B. Peng, R. C. Peng, Y. Q. Zhang, G. Dong, Z. Zhou, Y. Zhou, T. Li, Z. Liu, Z. Luo, S. Wang, Y. Xia, R. Qiu, X. Cheng, F. Xue, Z. Hu, W. Ren, Z. G. Ye, L. Q. Chen, Z. Shan, T. Min, and M. Liu, Sci. Adv., 6, eaba5847 (2020). [DOI: https://doi.org/10.1126/sciadv.aba5847]
  112. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. J. Han, Q. He, N. Balke, C. H. Yang, D. Lee, W. Hu, Q. Zhan, P. L. Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nat. Mater., 7, 478 (2008). [DOI: https://doi.org/10.1038/nmat2184]
  113. J. T. Heron, J. L. Bosse, Q. He, Y. Gao, M. Trassin, L. Ye, J. D. Clarkson, C. Wang, J. Liu, S. Salahuddin, D. C. Ralph, D. G. Schlom, J. Iniguez, B. D. Huey, and R. Ramesh, Nature, 516, 370 (2014). [DOI: https://doi.org/10.1038/nature14004]
  114. C. Ederer and N. A. Spaldin, Phys. Rev. B, 71, 060401 (2005). [DOI: https://doi.org/10.1103/physrevb.71.060401]
  115. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B, 71, 014113 (2005). [DOI: https://doi.org/10.1103/physrevb.71.014113]
  116. C. Ederer and C. J. Fennie, J. Phys.: Condens. Matter., 20, 434219 (2008). [DOI: https://doi.org/10.1088/0953-8984/20/43/434219]
  117. G. A. Smolenskii, A. I. Agranovskaya, S. N. Popov, and V. A. Isupov, Sov. Phys. Tech. Phys., 28, 2152 (1958).
  118. S. A. Ivanov, S. G. Eriksson, R. Tellgren, and H. Rundlof, Mater. Res. Bull., 39, 2317 (2004). [DOI: https://doi.org/10.1016/j.materresbull.2004.07.025]
  119. X. S. Gao, X. Y. Chen, J. Yin, J. Wu, Z. G. Liu, and M. Wang, J. Mater. Sci., 35, 5421 (2000). [DOI: https://doi.org/10.1023/A:1004815416774]
  120. S. Matteppanavar, S. Rayaprol, and B. Angadi, J. Mater. Sci., 52, 10709 (2017). [DOI: https://doi.org/10.1007/s10853-017-1256-6]
  121. A. Levstik, V. Bobnar, C. Filipic, J. Holc, M. Kosec, R. Blinc, Z. Trontelj, and Z. Jaglicic, Appl. Phys. Lett., 91, 012905 (2007). [DOI: https://doi.org/10.1063/1.2754354]
  122. R. Pirc, R. Blinc, and J. F. Scott, Phys. Rev. B, 79, 214114 (2009). [DOI: https://doi.org/10.1103/physrevb.79.214114]
  123. B. Aurivillius, Mixed Bismuth Oxides with Layer Lattices, Arki for Kemi, 1, 463 (1949).
  124. D. Y. Suarez, I. M. Reaney, and W. E. Lee, MRS Online Proc. Libr., 658, 119 (2000). [DOI: https://doi.org/10.1557/proc658-gg11.9]
  125. U. Chon, H. M. Jang, M. G. Kim, and C. H. Chang, Phys. Rev. Lett., 89, 087601 (2002). [DOI: https://doi.org/10.1103/physrevlett.89.087601]
  126. L. Keeney, T. Maity, M. Schmidt, A. Amann, N. Deepak, N. Petkov, S. Roy, M. E. Pemble, and R. W. Whatmore, J. Am. Ceram. Soc., 96, 2339 (2013). [DOI: https://doi.org/10.1111/jace.12467]
  127. Z. Li, K. Tao, J. Ma, Z. Gao, V. Koval, C. Jiang, G. Viola, H. Zhang, A. Mahajan, J. Cao, M. Cain, I. Abrahams, C. Nan, C. Jia, and H. Yan, J. Mater. Chem. C, 6, 2733 (2018). [DOI: https://doi.org/10.1039/c8tc00161h]
  128. A. K. Singh, S. Patnaik, S. D. Kaushik, and V. Siruguri, Phys. Rev. B, 81, 184406 (2010). [DOI: https://doi.org/10.1103/physrevb.81.184406]
  129. J. White, K. Sinha, and X. Xu, J. Appl. Phys., 125, 244101 (2019). [DOI: https://doi.org/10.1063/1.5098488]
  130. J. Liu, T. L. Sun, X. Q. Liu, H. Tian, T. T. Gao, and X. M. Chen, Adv. Funct. Mater., 28, 1706062 (2018). [DOI: https://doi.org/10.1002/adfm.201706062]
  131. N. Kumar, A. Gaur, and G. D. Varma, J. Alloys Compd., 509, 1060 (2011). [DOI: https://doi.org/10.1016/j.jallcom.2010.09.181]
  132. D. D. Dung, N. Q. Huy, N. H. Tuan, N. D. Quan, L. T. Loan, N. H. Linh, N. H. Thoan, N. N. Trung, and L. H. Bac, Mater. Lett., 283, 128897 (2021). [DOI: https://doi.org/10.1016/j.matlet.2020.128897]
  133. S. Sahoo, P. K. Mahapatra, and R.N.P. Choudhary, Mater. Sci. Eng., B, 260, 114624 (2020). [DOI: https://doi.org/10.1016/j.mseb.2020.114624]
  134. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, and V. K. Chakradhary, Ceram. Int., 46, 27336 (2020). [DOI: https://doi.org/10.1016/j.ceramint.2020.07.219]
  135. D. E. Jain Ruth, R.A.U. Rahman, B. Sundarakannan, and M. Ramaswamy, Appl. Phys. Lett., 114, 062902 (2019). [DOI: https://doi.org/10.1063/1.5078575]
  136. L.T.H. Thanh, N.B. Doan, L. H. Bac, D. V. Thiet, S. Cho, P. Q. Bao, and D. D. Dung, Mater. Lett., 186, 239 (2017). [DOI: https://doi.org/10.1016/j.matlet.2016.09.105]
  137. D. E. Jain Ruth, R.A.U. Rahman, M. Dhamodaran, V. Lakshmanan, S. Balasubramanian, P. Schmid-Beurmann, P. Zhou, G. Srinivasan, and M. Ramaswamy, J. Alloys Compd., 830, 154679 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2020.154679]
  138. K. Shalini and N.V. Giridharan, Ceram. Int., 45, 19002 (2019). [DOI: https://doi.org/10.1016/j.ceramint.2019.06.141]
  139. M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett., 95, 087206 (2005). [DOI: https://doi.org/10.1103/physrevlett.95.087206]
  140. K. Yamauchi and S. Picozzi, J. Phys.: Condens. Matter, 21, 064203 (2009). [DOI: https://doi.org/10.1088/0953-8984/21/6/064203]
  141. M. Matsubara, S. Manz, M. Mochizuki, T. Kubacka, A. Iyama, N. Aliouane, T. Kimura, S. L. Johnson, D. Meier, and M. Fiebig, Science, 348, 1112 (2015). [DOI: https://doi.org/10.1126/science.1260561]
  142. K. Zhai, Y. Wu, S. Shen, W. Tian, H. Cao, Y. Chai, B. C. Chakoumakos, D. Shang, L. Yan, F. Wang, and Y. Sun, Nat. Commun., 8, 519 (2017). [DOI: https://doi.org/10.1038/s41467-017-00637-x]
  143. G. Giovannetti, A. Stroppa, S. Picozzi, D. Baldomir, V. Pardo, S. Blanco-Canosa, F. Rivadulla, S. Jodlauk, D. Niermann, J. Rohrkamp, T. Lorenz, S. Streltsov, D. I. Khomskii, and J. Hemberger, Phys. Rev. B, 83, 060402 (2011). [DOI: https://doi.org/10.1103/physrevb.83.060402]
  144. V. G. Ivanov, M. V. Abrashev, M. N. Iliev, M. M. Gospodinov, J. Meen, and M. I. Aroyo, Phys. Rev. B, 82, 024104 (2010). [DOI: https://doi.org/10.1103/physrevb.82.024104]
  145. U. G. Jong, C. J. Yu, Y. S. Park, and C. S. Ri, Phys. Lett. A, 380, 3302 (2016). [DOI: https://doi.org/10.1016/j.physleta.2016.08.006]
  146. J. K. Dey, A. Chatterjee, S. Majumdar, A. C. Dippel, O. Gutowski, M. v. Zimmermann, and S. Giri, Phys. Rev. B, 99, 144412 (2019). [DOI: https://doi.org/10.1103/physrevb.99.144412]
  147. T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Nat. Mater., 7, 291 (2008). [DOI: https://doi.org/10.1038/nmat2125]
  148. H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y. Tokura, Phys. Rev. Lett., 105, 137202 (2010). [DOI: https://doi.org/10.1103/physrevlett.105.137202]
  149. S. Ghara, N. V. Ter-Oganessian, and A. Sundaresan, Phys. Rev. B, 95, 094404 (2017). [DOI: https://doi.org/10.1103/physrevb.95.094404]
  150. Y. Cao, G. Deng, P. Beran, Z. Feng, B. Kang, J. Zhang, N. Guiblin, B. Dkhil, W. Ren, and S. Cao, Sci. Rep., 7, 14079 (2017). [DOI: https://doi.org/10.1038/s41598-017-14169-3]
  151. T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B, 73, 220401 (2006). [DOI: https://doi.org/10.1103/physrevb.73.220401]
  152. J. Sannigrahi, S. Bhowal, S. Giri, S. Majumdar, and I. Dasgupta, Phys. Rev. B, 91, 220407 (2015). [DOI: https://doi.org/10.1103/physrevb.91.220407]
  153. X. Shen, L. Zhou, Y. Chai, Y. Wu, Z. Liu, Y. Yin, H. Cao, C. D. Cruz, Y. Sun, C. Jin, A. Munoz, J. A. Alonso, and Y. Long, NPG Asia Mater., 11, 50 (2019). [DOI: https://doi.org/10.1038/s41427-019-0151-9]
  154. L. Weymann, L. Bergen, T. Kain, A. Pimenov, A. Shuvaev, E. Constable, D. Szaller, B. V. Mill, A. M. Kuzmenko, V. Y. Ivanov, N. V. Kostyuchenko, A. I. Popov, A. K. Zvezdin, A. Pimenov, A. A. Mukhin, and M. Mostovoy, npj Quantum Mater., 5, 61 (2020). [DOI: https://doi.org/10.1038/s41535-020-00263-9]
  155. S. Mori, C. H. Chen, and S. W. Cheong, Nature, 392, 473 (1988). [DOI: https://doi.org/10.1038/33105]
  156. P. G. Radaelli, D. E. Cox, M. Marezio, and S. W. Cheong, Phys. Rev. B, 55, 3015 (1997). [DOI: https://doi.org/10.1103/physrevb.55.3015]
  157. R. Liu, L. Pan, S. Peng, L. Qin, J. Bi, J. Wu, H. Wu, and Z. G. Ye, J. Mater. Chem. C, 7, 1999 (2019). [DOI: https://doi.org/10.1039/c8tc05615c]
  158. T. Honda, J. S. White, A. B. Harris, L. C. Chapon, A. Fennell, B. Roessli, O. Zaharko, Y. Murakami, M. Kenzelmann, and T. Kimura, Nat. Commun., 8, 15457 (2017). [DOI: https://doi.org/10.1038/ncomms15457]
  159. S. Ghara, E. Suard, F. Fauth, T. T. Tran, P. S. Halasyamani, A. Iyo, J. Rodriguez-Carvajal, and A. Sundaresan, Phys. Rev. B, 95, 224416 (2017). [DOI: https://doi.org/10.1103/physrevb.95.224416]
  160. P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven, and H.S.J. van der Zant, Nature, 429, 392 (2004). [DOI: https://doi.org/10.1038/nature02568]
  161. P. G. Radaelli, L. C. Chapon, A. Daoud-Aladine, C. Vecchini, P. J. Brown, T. Chatterji, S. Park, and S. W. Cheong, Phys. Rev. Lett., 101, 067205 (2008). [DOI: https://doi.org/10.1103/physrevlett.101.067205]
  162. M. Morin, A. Scaramucci, M. Bartkowiak, E. Pomjakushina, G. Deng, D. Sheptyakov, L. Keller, J. Rodriguez-Carvajal, N. A. Spaldin, M. Kenzelmann, K. Conder, and M. Medarde, Phys. Rev. B, 91, 064408 (2015). [DOI: https://doi.org/10.1103/physrevb.91.064408]
  163. A. Scaramucci, H. Shinaoka, M. V. Mostovoy, M. Muller, C. Mudry, M. Troyer, and N. A. Spaldin, Phys. Rev. X, 8, 011005 (2018). [DOI: https://doi.org/10.1103/physrevx.8.011005]
  164. Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett., 105, 257201 (2010). [DOI: https://doi.org/10.1103/physrevlett.105.257201]
  165. S. P. Shen, Y. S. Chai, J. Z. Cong, P. J. Sun, J. Lu, L. Q. Yan, S. G. Wang, and Y. Sun, Phys. Rev. B, 90, 180404 (2014). [DOI: https://doi.org/10.1103/physrevb.90.180404]
  166. G. L. Tan and M. Wang, J. Electroceram., 26, 170 (2011). [DOI: https://doi.org/10.1007/s10832-011-9641-z]
  167. G. L. Tan and W. Li, J. Am. Ceram. Soc., 98, 1812 (2015). [DOI: https://doi.org/10.1111/jace.13530]
  168. X. Li and G. L. Tan, J. Alloys Compd., 858, 157722 (2021). [DOI: https://doi.org/10.1016/j.jallcom.2020.157722]
  169. M. J. Pitcher, P. Mandal, M. S. Dyer, J. Alaria, P. Borisov, H. Niu, J. B. Claridge, and M. J. Rosseinsky, Science, 347, 420 (2015). [DOI: https://doi.org/10.1126/science.1262118]
  170. P. N. Ravi Shankar, S. Mishra, and S. Athinarayanan, APL Mater., 8, 040906 (2020). [DOI: https://doi.org/10.1063/5.0003305]
  171. J. A. Mundy, C. M. Brooks, M. E. Holtz, J. A. Moyer, H. Das, A. F. Rebola, J. T. Heron, J. D. Clarkson, S. M. Disseler, Z. Liu, A. Farhan, R. Held, R. Hovden, E. Padgett, Q. Mao, H. Paik, R. Misra, L. F. Kourkoutis, E. Arenholz, A. Scholl, J. A. Borchers, W. D. Ratcliff, R. Ramesh, C. J. Fennie, P. Schiffer, D. A. Muller, and D. G. Schlom, Nature, 537, 523 (2016). [DOI: https://doi.org/10.1038/nature19343]
  172. S. Fan, H. Das, A. Rebola, K. A. Smith, J. Mundy, C. Brooks, M. E. Holtz, D. A. Muller, C. J. Fennie, R. Ramesh, D. G. Schlom, S. McGill, and J. L. Musfeldt, Nat. Commun., 11, 5582 (2020). [DOI: https://doi.org/10.1038/s41467-020-19285-9]
  173. C.A.F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater., 22, 2900 (2010). [DOI: https://doi.org/10.1002/adma.200904326]
  174. D. K. Pradhan, S. Kumari, and P. D. Rack, Nanomaterials, 10, 2072 (2020). [DOI: https://doi.org/10.3390/nano10102072]
  175. M. M. Vopson, Crit. Rev. Solid State Mater. Sci., 40, 223 (2015). [DOI: https://doi.org/10.1080/10408436.2014.992584]
  176. J. M. Hu, L. Q. Chen, and C. W. Nan, Adv. Mater., 28, 15 (2016). [DOI: https://doi.org/10.1002/adma.201502824]
  177. J. H. Cho, N. J. Lee, H. J. Lee, J. H. Lee, G. J. Lee, M. Suzuki, M. Hinterstein, Y. S. Oh, J. W. Choi, G. T. Hwang, J. H. Lee, S. H. Kim, and W. Jo, Ph. D. Thesis, Direct Coupling Between Ferromagnetic Spin Interaction and Ferroelectric Switching in Perovskite Oxides (In press).