DOI QR코드

DOI QR Code

Coronavirus Disease 2019: Reasons for Better Clinical Course for Children Compared to Adults

코로나바이러스감염증-19: 소아청소년의 임상 경과가 성인에 비하여 양호한 이유

  • Kwak, Byung Ok (Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital) ;
  • Kim, Dong Hyun (Department of Pediatrics, Inha University School of Medicine)
  • 곽병옥 (한림대학교 강남성심병원 소아청소년과) ;
  • 김동현 (인하대학교 의과대학 소아과학교실)
  • Received : 2020.08.12
  • Accepted : 2021.04.05
  • Published : 2021.04.25

Abstract

There have been several reports on why the clinical course of coronavirus disease 2019 (COVID-19) in pediatric patients is milder than in adults. There are distinctive points in the immune system between children and adults, as well as in the angiotensin-converting enzyme 2 gene expression, the characteristics of the respiratory system, the effects of comorbidities and risk factors, and the effect of infection control. Even though children tend to have mild forms of COVID-19, this does not mean that we should not regard it as a matter of importance.

소아청소년 코로나바이러스감염증-19 환자들의 유병률과 사망률이 성인에 비하여 낮지만, 임상적인 중증도가 낮은 이유는 아직 잘 알려져 있지 않다. 소아청소년 환자들이 비교적 가벼운 임상 경과를 보이는 이유에 관하여 지금까지 알려진 내용들을 살펴보면, 코로나바이러스감염증-19의 임상 경과에 영향을 줄 수 있는 면역 체계의 특성과 면역 상호작용, 안지오텐신전환효소 2 수용체의 역할, 호흡기계의 특징, 동반 질환과 위험 요인 보유, 방역 조치의 영향 등에서 소아청소년은 성인과 구별되는 차이점이 있었다. 그러나 상대적으로 양호한 임상 경과를 보이는 소아청소년 환자들이라 하더라도 필요한 의료 자원이 적시에 제공되어야 한다.

Keywords

References

  1. World Health Organization. Coronavirus Disease 2019 (COVID-19). Situation Report-204 [Internet]. Geneva: World Health Organization; 2020 [cited 2020 Aug 11]. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200811-covid-19-sitrep-204.pdf.
  2. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323:1239-42. https://doi.org/10.1001/jama.2020.2648
  3. Cruz AT, Zeichner SL. COVID-19 in children: initial characterization of the pediatric disease. Pediatrics 2020;145:e20200834. https://doi.org/10.1542/peds.2020-0834
  4. Jiehao C, Jin X, Daojiong L, Zhi Y, Lei X, Zhenghai Q, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis 2020;71:1547-51. https://doi.org/10.1093/cid/ciaa198
  5. Dong Y, Mo X, Hu Y, Qi X, Jiang F, Jiang Z, et al. Epidemiology of COVID-19 among children in China. Pediatrics 2020;145:e20200702. https://doi.org/10.1542/peds.2020-0702
  6. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci 2015;282:20143085.
  7. Benn CS, Netea MG, Selin LK, Aaby P. A small jab - a big effect: nonspecific immunomodulation by vaccines. Trends Immunol 2013;34:431-9. https://doi.org/10.1016/j.it.2013.04.004
  8. Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic immune system development in newborn children. Cell 2018;174:1277-1292.e14. https://doi.org/10.1016/j.cell.2018.06.045
  9. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between Universal BCG Vaccination Policy and Reduced Mortality for COVID-19 [Internet]. medRxiv; 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.03.24.20042937v2.
  10. Kleinnijenhuis J, Quintin J, Preijers F, Benn CS, Joosten LA, Jacobs C, et al. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 2014;6:152-8. https://doi.org/10.1159/000355628
  11. Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 2018;23:89-100.e5. https://doi.org/10.1016/j.chom.2017.12.010
  12. Nickbakhsh S, Mair C, Matthews L, Reeve R, Johnson PCD, Thorburn F, et al. Virus-virus interactions impact the population dynamics of influenza and the common cold. Proc Natl Acad Sci U S A 2019;116:27142-50. https://doi.org/10.1073/pnas.1911083116
  13. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005;79:14614-21. https://doi.org/10.1128/JVI.79.23.14614-14621.2005
  14. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8. https://doi.org/10.1038/s41368-020-0074-x
  15. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7. https://doi.org/10.1002/path.1570
  16. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA 2020;323:2427-9. https://doi.org/10.1001/jama.2020.8707
  17. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005;436:112-6. https://doi.org/10.1038/nature03712
  18. Schouten LR, van Kaam AH, Kohse F, Veltkamp F, Bos LD, de Beer FM, et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care 2019;9:55. https://doi.org/10.1186/s13613-019-0529-4
  19. Ortiz ME, Thurman A, Pezzulo AA, Leidinger MR, Klesney-Tait JA, Karp PH, et al. Heterogeneous expression of the SARS-coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine 2020;60:102976. https://doi.org/10.1016/j.ebiom.2020.102976
  20. Phalen RF, Oldham MJ, Beaucage CB, Crocker TT, Mortensen JD. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat Rec 1985;212:368-80. https://doi.org/10.1002/ar.1092120408
  21. Chilvers MA, Rutman A, O'Callaghan C. Functional analysis of cilia and ciliated epithelial ultrastructure in healthy children and young adults. Thorax 2003;58:333-8. https://doi.org/10.1136/thorax.58.4.333
  22. Navarro S, Driscoll B. Regeneration of the aging lung: a mini-review. Gerontology 2017;63:270-80. https://doi.org/10.1159/000451081
  23. Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J 2020;55:2000524. https://doi.org/10.1183/13993003.00524-2020
  24. Brake SJ, Barnsley K, Lu W, McAlinden KD, Eapen MS, Sohal SS. Smoking upregulates angiotensin-converting enzyme-2 receptor: a potential adhesion site for novel coronavirus SARS-CoV-2 (COVID-19). J Clin Med 2020;9:841. https://doi.org/10.3390/jcm9030841
  25. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, McKiernan CA, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr 2020;174:868-73. https://doi.org/10.1001/jamapediatrics.2020.1948
  26. Oualha M, Bendavid M, Berteloot L, Corsia A, Lesage F, Vedrenne M, et al. Severe and fatal forms of COVID-19 in children. Arch Pediatr 2020;27:235-8. https://doi.org/10.1016/j.arcped.2020.05.010
  27. Lee J, Kim KH, Kang HM, Kim JH. Do we really need to isolate all children with COVID-19 in healthcare facilities? J Korean Med Sci 2020;35:e277. https://doi.org/10.3346/jkms.2020.35.e277
  28. Kim J, Choe YJ, Lee J, Park YJ, Park O, Han MS, et al. Role of children in household transmission of COVID-19. Arch Dis Child, in press 2020.
  29. Yoon Y, Kim KR, Park H, Kim S, Kim YJ. Stepwise school opening and an impact on the epidemiology of COVID-19 in the children. J Korean Med Sci 2020;35:e414. https://doi.org/10.3346/jkms.2020.35.e414
  30. Kim EY, Ryu B, Kim EK, Park YJ, Choe YJ, Park HK, et al. Children with COVID-19 after reopening of schools, South Korea. Pediatr Infect Vaccine 2020;27:180-3. https://doi.org/10.14776/piv.2020.27.e23