DOI QR코드

DOI QR Code

Evaluation of sequence tracking methods for Compton cameras based on CdZnTe arrays

  • Lee, Jun (Department of Health and Safety Convergence Science, Korea University) ;
  • Kim, Younghak (Department of Bio-convergence Engineering, Korea University) ;
  • Bolotnikov, Aleksey (Instrumentation Division, Brookhaven National Laboratory) ;
  • Lee, Wonho (School of Health and Environmental Science, Korea University)
  • Received : 2020.05.12
  • Accepted : 2021.06.13
  • Published : 2021.12.25

Abstract

In this study, the performance of sequence tracking methods for multiple interaction events in specific CdZnTe Compton imagers was evaluated using Monte Carlo simulations. The Compton imager consisted of a 6 × 6 array of virtual Frisch-grid CZT crystals, where the dimensions of each crystal were 5 × 5 × 12 mm3. The sequence tracking methods for another Compton imager that consists of two identical CZT crystals arrays were also evaluated. When 662 keV radiation was incident on the detectors, the percentages of the correct sequences determined by the simple comparison and deterministic methods for two sequential interactions were identical (~80%), while those evaluated using the minimum squared difference method (55-59%) and Three Compton method (45-55%) for three sequential interactions, differed from each other. The reconstructed images of a 662 keV point source detected using single and double arrays were evaluated based on their angular resolution and signal-to-noise ratio, and the results showed that the double arrays outperformed single arrays.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial grant funded by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 1903006), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C1005924) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (No. 20214000000070, Promoting of expert for energy industry advancement in the field of radiation technology).

References

  1. M. Singh, R.R. Brechner, Experimental test-object study of electronically collimated SPECT, J. Nucl. Med. 31 (1990) 178-186.
  2. V. Schonfelder, R. Diehl, G.G. Lichti, H. Steinle, B.N. Swanenburg, A.J.M. Deerenberg, H. Aarts, J. Lockwood, W. Webber, J. Macri, J. Ryan, G. Simpson, B.G. Taylor, K. Bennett, M. Snelling, The imaging Compton telescope comtel on the gamma ray observatory, IEEE Trans. Nucl. Sci. NS- 31 (1984) 766-770.
  3. J.B. Martin, N. Dogan, J.E. Gormley, G.F. Knoll, M. O'Donnell, D.K. Wehe, Imaging multi-energy gamma-ray fields with a Compton scatter camera, IEEE Trans. Nucl. Sci. 41 (1994) 1019-1025. https://doi.org/10.1109/23.322851
  4. D. Xu, Z. He, C.E. Lehner, F. Zhang, 4-pi Compton imaging with single 3D position-sensitive CdZnTe detector, Proc. SPIE 5540 (2004) 144-155.
  5. C.E. Lehner, Z. He, F. Zhang, 4 π Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood, IEEE Trans. Nucl. Sci. 51 (2004) 1618-1624. https://doi.org/10.1109/TNS.2004.832573
  6. J. Chu, Advanced Imaging Algorithms with Position-Sensitive Gamma-Ray Detectors, Ph.D. dissertation, department of nuclear engineering and radiological science, University of Michigan, Ann Arbor, MI, 2018.
  7. Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instrum. Methods A. 463 (2001) 250-267. https://doi.org/10.1016/S0168-9002(01)00223-6
  8. A.E. Bolotnikov, J. Butcher, G.S. Camarda, Y. Cui, G. De Geronimo, J. Fried, R. Gul, P.M. Fochuk, M. Hamade, A. Hossain, K. Kim, O.V. Kopach, M. Petryk, E. Vernon, G. Yang, R.B. James, F. Zhang, 4 π Compton imaging using a 3-D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood, IEEE Trans. Nucl. Sci. 59 (2012) 1544-1550. https://doi.org/10.1109/TNS.2012.2187932
  9. W. Lee, A.E. Bolotnikov, T. Lee, G.S. Camarda, T. Cui, R. Gul, A. Hossain, Y. Roy, G. Yang, R.B. James, Mini Compton camera based on an array of Frisch-grid CdZnTe detectors, IEEE Trans. Nucl. Sci. 63 (2016) 259-265. https://doi.org/10.1109/TNS.2015.2514120
  10. Y. Kim, W. Lee, The development of virtual frisch-grid CZT imager based on the array structure, J. Rad. Pro. Dosim 45 (1) (2020) 35-44.
  11. Y. Kim, T. Lee, W. Lee, Double-layered CZT Compton imager, IEEE Trans. Nucl. Sci. 64 (2017) 1769-1773. https://doi.org/10.1109/TNS.2016.2632977
  12. C.E. Lehner, Z. He, Image artifacts resulting from gamma-ray tracking algorithms used with Compton imagers, in: IEEE Symposium Conference Record Nuclear Science, Rome, Italy, Oct 16-22, 2004.
  13. D. Xu, Gamma-Ray Imaging and Polarization Measurement Using 3-D Position-Sensitive CdZnTe Detectors, Ph.D. dissertation, department of nuclear engineering and radiological science, University of Michigan, Ann Arbor, MI, 2006.
  14. U.G. Oberlack, E. Aprile, A. Curioni, V. Egorov, K.L. Giboni, Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT), Proc. SPIE 4141 (2000) 168-177.
  15. C.E. Lehner, 4-pi Compton Imaging Using a Single 3-D Position Sensitive CdZnTe Detector, Ph.D. dissertation, department of nuclear engineering and radiological science, University of Michigan, Ann Arbor, MI, 2004.
  16. R.A. Kroeger, W.N. Johnson, J.D. Kurfess, B.F. Phlips, E.A. Wulf, Three-compton telescope: theory, simulations, and performance, IEEE Trans. Nucl. Sci. 49 (2002) 1887-1892. https://doi.org/10.1109/TNS.2002.801539
  17. H.H. Barrett, T. White, L.C. Parra, List-mode likelihood, J. Opt. Soc. Amer. A 14 (1997) 2914-2923. https://doi.org/10.1364/JOSAA.14.002914
  18. L. Parra, H.H. Barrett, List-mode likelihood: EM algorithm and image quality estimation demonstrated on 2-D PET, IEEE Trans. Med. Imag. 17 (1998) 228-234. https://doi.org/10.1109/42.700734
  19. Y. Du, Development of a Prototype Compton Scattering Camera Using 3-D Position Sensitive CZT Detectors, Ph.D. dissertation, department of nuclear engineering and radiological science, University of Michigan, Ann Arbor, MI, 2001.
  20. C.E. Ordonez, A. Bolozdynya, W. Chang, Doppler broadening of energy spectra in Compton cameras, IEEE Nucl. Sci. Symp. Conf. Rec. 2 (1997) 1361-1365.
  21. R. Cesareo, A.L. Hanson, G.E. Gigante, L.J. Pedraza, S.Q.G. Mahtaboally, Interaction of keV photons with matter and new applications, Phys. Rep. 213 (1992) 117-178. https://doi.org/10.1016/0370-1573(92)90086-F
  22. F. Biggs, L.B. Mendelsohn, J.B. Mann, Hartree-fock Compton profiles for the elements, Atomic Data Nucl. Data Tables 16 (1975) 201-309. https://doi.org/10.1016/0092-640x(75)90030-3
  23. J. Lee, Evaluation on Compton Sequence Methods for Multiple Interaction Events Based on Array of CZT Compton Camera, M.S. thesis, department of health and safety convergence science, University of Korea, Seoul, 2020.