DOI QR코드

DOI QR Code

Approximate Analytical Formula for Minimum Principal Stress Satisfying the Generalized Hoek-Brown Failure Criterion

일반화된 Hoek-Brown 파괴기준식을 만족하는 최소주응력의 해석적 근사식

  • Lee, Youn-Kyou (Department of Coastal Construction Engineering, Kunsan National University)
  • 이연규 (군산대학교 건축․해양건설융합공학부)
  • Received : 2021.11.08
  • Accepted : 2021.11.24
  • Published : 2021.12.31

Abstract

Since the generalized Hoek-Brown criterion (GHB) provides an efficient way of identifying its strength parameter values with the consideration of in-situ rock mass condition via Geological Strength Index (GSI), this criterion is recognized as one of the standard rock mass failure criteria in rock mechanics community. However, the nonlinear form of the GHB criterion makes its mathematical treatment inconvenient and limits the scope of its application. As an effort to overcome this disadvantage of the GHB criterion, the explicit approximate analytical equations for the minimum principal stress, which is associated with the maximum principal stress at failure, are formulated based on the Taylor polynomial approximation of the original GHB criterion. The accuracy of the derived approximate formula for the minimum principal stress is verified by comparing the resulting approximate minimum principal stress with the numerically calculated exact values. To provide an application example of the approximate formulation, the equivalent friction angle and cohesion for the expected plastic zone around a circular tunnel in a GHB rock mass are calculated by incorporating the formula for the approximate minimum principal stress. It is found that the simultaneous consideration of the values of mi, GSI and far-field stress is important for the accurate calculation of equivalent Mohr-Coulomb parameter values of the plastic zone.

일반화된 Hoek-Brown(GHB) 파괴기준식은 GSI 값을 이용하여 현장 암반조건이 반영된 강도정수 값을 효과적으로 결정할 수 있기 때문에 암반공학 분야에서 표준 파괴기준식의 하나로 인식되고 있다. 그러나 GHB 파괴기준식의 비선형적 형태는 이 식의 수학적 취급을 어렵게 하고 이 식의 적용 범위를 제약하는 요인이 되고 있다. GHB 파괴기준식의 이러한 단점을 극복하기 위한 노력의 하나로 Taylor 다항함수 근사원리를 적용하여 파괴 최대주응력에 대응하는 최소주응력을 근사적으로 계산할 수 있는 명시적, 해석적 수식을 유도하였다. 근사식으로 구한 최소주응력과 수치해석적으로 계산한 정해를 비교하여 이 연구에서 유도한 최소주응력 근사식의 정확성을 검증하였다. 연구결과의 응용사례를 제시하기 위해 근사 최소주응력 계산식을 활용하여 GHB 암반에 굴착된 원형터널 주변에 예상되는 소성영역의 등가 마찰각과 등가 점착력을 계산하였다. 소성영역의 등가 Mohr-Coulomb 강도정수를 정밀하기 산정하기 위해서는 mi, GSI, 초기지압의 크기를 동시에 고려하는 것이 중요한 것으로 나타났다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1F1A1048311).

References

  1. Brady, B.H.G. and Brown, E.T., 2004, Rock mechanics for underground mining, 3rd Ed., Kluwer Academic Publishers, Dordrecht.
  2. Carranza-Torres, C. and Fairhurst, C., 1999, The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 36, 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9
  3. Clausen, J. and Damkilde, L., 2008, An exact implementation of the Hoek-Brown criterion for elasto-plastic finite element calculations, Int. J. Rock Mech. Min. Sci., 45, 831-847. https://doi.org/10.1016/j.ijrmms.2007.10.004
  4. Haimson, B., Bobet, A., 2012, Introduction to suggested methods for failure criteria. In: Ulusay R. (eds) The ISRM suggested methods for rock characterization, testing and monitoring: 2007-2014. Springer, Cham.
  5. Hoek, E., 1999, Putting numbers to geology-an engineer's viewpoint, Quart. J. Eng. Geol., 32, 1-19. https://doi.org/10.1144/GSL.QJEG.1999.032.P1.01
  6. Hoek, E., Carranza-Torres, C. and Corkum, B., 2002, Hoek-Brown failure criterion - 2002 Edition, Proc. NARM-TAC Conf., Toronto, 1, 267-273.
  7. Lee, Y.-K. and Pietruszczak, S., 2008, A new numerical procedure for elastic-plastic analysis of a circular opening excavated in a strain-softening rock mass, Tunn. Undergr. Space Technol., 23, 588-599. https://doi.org/10.1016/j.tust.2007.11.002
  8. Lee, Y.-K. and Pietruszczak, S., 2017, Analytical representation of Mohr failure envelope approximating the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 100, 90-99. https://doi.org/10.1016/j.ijrmms.2017.10.021
  9. Lee, Y.-K., 2019, Analytical formula for the equivalent Mohr-Coulomb strength parameters best-fitting the generalized Hoek-Brown criterion in an arbitrary range of minor principal Stress, Tunnel & Underground Space, 29, 172-183. https://doi.org/10.7474/TUS.2019.29.3.172
  10. Li, A.J., Merifield, R.S. and Lyamin, A.V., 2008, Stability charts for rock slopes based on the Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 45, 689-700. https://doi.org/10.1016/j.ijrmms.2007.08.010
  11. Michalowski, R.L. and Park, D., 2020, Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion, Int. J. Rock Mech. Min. Sci., 127, 140217.
  12. Rafiei Renani, H. and Martin, C.D., 2020, Slope stability analysis using equivalent Mohr-Coulomb and Hoek-Brown criteria, Rock Mech. Rock Eng., 53, 13-21. https://doi.org/10.1007/s00603-019-01889-3
  13. Rojat, F., Labiouse, V. and Mestat, P., 2015, Improved analytical solutions for the response of underground excavations in rock mass satisfying the generalized Hoek-Brown failure criterion, Int. J. Rock Mech. Min. Sci., 79, 193-204. https://doi.org/10.1016/j.ijrmms.2015.08.002
  14. Serrano, A., Olalla, C. and Galindo, R.A., 2014, Ultimate bearingcapacity at the tip of a pile in rock based on the modified Hoek- Brown criterion, Int. J. Rock Mech. Min. Sci., 71, 83-90. https://doi.org/10.1016/j.ijrmms.2014.07.006
  15. Shen, J., Priest, S.D. and Karakus, M., 2012, Determination of Mohr-Coulomb shear strength parameters from generalized Hoek-Brown criterion for stability analysis, Rock Mech. Rock Eng., 45, 123-129. https://doi.org/10.1007/s00603-011-0184-z
  16. Sofianos, A.I., 2003, Tunnelling Mohr-Coulomb strength parameters for rock masses satisfying the generalized Hoek-Brown criterion, Int. J. Rock Mech. Min. Sci., 40, 435-440. https://doi.org/10.1016/S1365-1609(03)00017-0
  17. Sofianos, A.I., Nomikos, P.P., 2006, Equivalent Mohr-Coulomb and generalized Hoek-Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock, Int. J. Rock Mech. Min. Sci., 43, 683-704. https://doi.org/10.1016/j.ijrmms.2005.11.006
  18. Yang, X.-L.. 2018, Lower-bound analytical solution for bearing capacity factor using modified Hoek-Brown failure criterion, Canadian Geotech. J., 55, 577-583. https://doi.org/10.1139/cgj-2016-0694