Acknowledgement
본 연구는 국토교통부 국토교통과학기술진흥원의 스마트건설기술개발사업(과제번호: 21SMIP-A157075-02)인 "교량 및 터널의 원격, 자동화 시공을 위한 핵심기술 개발"의 지원으로 수행되었습니다.
References
- Anon, O.H., 1979, "Classification of rocks and soils for engineering geological mapping, Part I: Rock and soil materials", Bulletin of the International Association of Engineering Geology, 19, pp. 364-371. https://doi.org/10.1007/BF02600503
- Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N., Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hardrock condition", Tunn. Undergr. Space Technol. Vol. 63, pp. 29-43. https://doi.org/10.1016/j.tust.2016.12.009
- Bae, G.-J., Chang, S.-H., Park, Y.-T., Choi, S.-W., Lee, G.-P., Kwon, J.-Y., Han, K.-T., 2014, "Manufacturing of an earth pressure balanced shield TBM cutterhead for a subsea discharge tunnel and its field performance analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 161-172. https://doi.org/10.9711/KTAJ.2014.16.2.161
- Barton N, Lien R, Lunde J, 1974. Engineering classification of rock masses for the design of tunnel support, Rock Mech., Vol. 6, pp. 189-236. https://doi.org/10.1007/BF01239496
- Bieniawski ZT, 1989. Engineering rock mass classifications. John Wiley & Sons.
- Breiman, L, Friedman, J, Stone, C.J, and Olshen, R.A., 1984, Classification and Regression Trees. CRC press.
- Breiman, L., 1996. "Bagging predictors." Machine Learning 24, pp. 123-140. https://doi.org/10.1007/BF00058655
- Choi, S.-W., Lee, C., Kang, T.-H., Chang, S.-H., 2020, "Current Status of Technical Development for TBM Simulator", TUNNEL & UNDERGROUND SPACE, Vol. 30, No. 5, pp. 433-445. https://doi.org/10.7474/TUS.2020.30.5.433
- Deere DU, Miller RP., 1966, Engineering classification and index properties for intact rock, Tech. Rep. No. AFWL-TR-65-115, Air Force Weapons Lab., Kirtland Air Base, New Mexico.
- Deere, D.U., Hendron, A.J., Patton, F.D., and Cording, E.J., 1967, Design of surface and near surface construction in rock, 8th U.S. Symposium on Rock Mechanics: Failure and breakage of rock: New York, Society of Mining Engineers, American Institute of Mining, Metallurgical, and Petroleum Engineers.
- Gholamnejad, J., Narges, T. (2010), "Application of artificial neural networks to the prediction of tunnel boring machine penetration rate", Min. Sci. Technol. (China) Vol. 20, No. 5, pp. 727-733. https://doi.org/10.1016/S1674-5264(09)60271-4
- Grima, M.A., Bruines, P.A., Verhoef, P.N.W. (2000), "Modeling tunnel boring machine performance by neuro-fuzzy methods", Tunn. Undergr. Space Technol. Vol. 15, No.3, pp. 259-269. https://doi.org/10.1016/S0886-7798(00)00055-9
- ISRM, 1979, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, International Journal of Rock Mechanics and Mining. Sciences and Geomechanics Abstracts, 16: pp. 135-140.
- ISRM, 1981, Suggested method for laboratory determination of direct shear strength, Rock characterisation testing and monitoring (Brown ET ed.), International Society for Rock Mechanics, Pergamon: Oxford, UK.
- Jung, J.-H., Kim, B.-K., Chung, H., Kim, H.-M., Lee, I.-M., 2019, "A ground condition prediction ahead of tunnel face utilizing time series analysis of shield TBM data in soil tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 2, pp. 227-242. https://doi.org/10.9711/KTAJ.2019.21.2.227
- Kang, S.-H., Kim, D.-H., Kim, H.-T., Song, S.-W., 2017, "Study on the structure of the articulation jack and skin plate of the sharp curve section shield TBM in numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 19, No. 3, pp. 421-435. https://doi.org/10.9711/KTAJ.2017.19.3.421
- Kang, T.-H., Choi, S.-W., Lee, C., Chang, S.-H., 2020, "A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information", TUNNEL & UNDERGROUND SPACE, Vol. 30, No. 6, pp. 540-550. https://doi.org/10.7474/TUS.2020.30.6.540
- Kearns, M. and Valiant, L.G., 1994, "Cryptographic limitations on learning Boolean formulae and finite automata", Journal of the Association for Computing Machinery, Vol. 41, pp. 67-95. https://doi.org/10.1145/174644.174647
- Kim, T.H., Ko, T.Y., Park, Y.S., Kim, T.K., Lee, D.H., 2020a, "Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique", TUNNEL & UNDERGROUND SPACE, Vol. 30, No. 3, pp. 214-225. https://doi.org/10.7474/TUS.2020.30.3.214
- Kim, T.H., Kwak, N.S., Kim, T.K., Jung, S., Ko, T.Y., 2021, "A TBM data-based ground prediction using deep neural network", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 1, pp. 13-24. https://doi.org/10.9711/KTAJ.2021.23.1.013
- Kim, Y., Hong, J., Kim, B., 2020b, "Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM." Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 5, pp. 575-589. https://doi.org/10.9711/KTAJ.2020.22.5.575
- Ko, T.Y., Kim, T.K., Lee, D.H., 2019, "Statistical Characteristics and Rational Estimation of Rock TBM Utilization", TUNNEL & UNDERGROUND SPACE, Vol. 29, No. 5, pp. 356-366.
- La, Y.S., Kim, M.I., Kim, B., 2019, "Prediction of replacement period of shield TBM disc cutter using SVM", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 5, pp. 641-656. https://doi.org/10.9711/KTAJ.2019.21.5.641
- Mahdevari, S., Shahriar, K., Yagiz, S., Shirazi, M.A., 2014, A support vector regression model for predicting tunnel boring machine penetration rates, Int. J. Rock Mech. Min., Vol. 74, pp. 214-229.
- Salimi, A., Rostami, J., Moormann, C., Delisio, A., 2016, Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs, Tunn. Undergr. Space Technol., Vol. 58, pp. 236-246. https://doi.org/10.1016/j.tust.2016.05.009
- Terzaghi K., 1946, Rock defects and load on tunnel supports, Introduction to rock tunnelling with steel supports, (R.V. Proctor & T.L. White eds.) Commercial Sheering & Stamping Co: Youngstown, USA.
- Vapnik, V., Golowich, S., and Smola, A., 1996, "Support Method for Function Approximation Regression Estimation and Signal Processing", In Proceedings of the 9th International Conference on Neural Information Processing Systems (NIPS' 96), Cambridge, pp. 281-287.
- Wickham, G.E.; Tiedemann, H.R.; Skinner, E.H., 1972. "Support determination based on geologic predictions". In Lane, K.S.; Garfield, L.A. (eds.). Proc. 1st North American Rapid Excavation &Tunnelling Conference (RETC), Chicago. 1. American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), New York. pp. 43-64.
- Yagiz, S., Gokceoglu, C., Sezer, E., Iplikci, S., 2009, Application of two non-linear prediction tools to the estimation of tunnel boring machine performance, Eng. Appl.Artif. Intell. Vol.22 (4-5), pp. 808-814. https://doi.org/10.1016/j.engappai.2009.03.007
- Yagiz, S., Karahan, H., 2011, "Prediction of hard rock TBM penetration rate using particle swarm optimization", Rock Mechanics and Mining Science, Vol. 48, No. 3, pp. 427-433. https://doi.org/10.1016/j.ijrmms.2011.02.013