DOI QR코드

DOI QR Code

A Tale of the Tail : A Comprehensive Understanding of the "Human Tail"

  • Tojima, Sayaka (Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University)
  • 투고 : 2021.01.21
  • 심사 : 2021.02.15
  • 발행 : 2021.05.01

초록

Humans do not have tails; however, a congenital anomaly named "human tail" has been recognized since old times. In contrast with its impactful name, the anomaly itself is not fatal, and thus it has not been considered as a clinically serious symptom. However, many case reports suggested that retention of "the tail" is closely associated with spinal cord malformation and should be treated with care by neurosurgeons. Therefore, this review summarizes our knowledge regarding the anatomy, function, and development of the tail as a general structure in mammals. Learning the basic knowledge regarding tail anatomy and development would help clinicians to understand the "human tail" more concisely and to select more appropriate examinations or treatments in relation to this congenital anomaly.

키워드

참고문헌

  1. Altmann SA : A field study of the sociobiology of rhesus monkeys, Macaca mulatta. Ann N Y Acad Sci 102 : 338-435, 1962 https://doi.org/10.1111/j.1749-6632.1962.tb13650.x
  2. Ankel F : Der canalis sacralis als indikator fur die lange der caudalregion der primaten. Folia Primatol (Basel) 3 : 263-276, 1965 https://doi.org/10.1159/000155038
  3. Ankel F : Vertebral morphology of fossil and extant primates in Tuttle R (ed) : The Functional and Evolutionary Biology of Primates, ed 1. New York : Aldine, 1972, pp223-240
  4. Bernstein PL, Smith WJ, Krensky A, Rosene K : Tail positions of Cercopithecus aethiops. Z Tierpsychol 46 : 268-278, 1978
  5. Burke AC, Nelson CE, Morgan BA, Tabin C : Hox genes and the evolution of vertebrate axial morphology. Development 121 : 333-346, 1995 https://doi.org/10.1242/dev.121.2.333
  6. Dubrulle J, McGrew MJ, Pourquie O : FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106 : 219-232, 2001 https://doi.org/10.1016/S0092-8674(01)00437-8
  7. Economides KD, Zeltser L, Capecchi MR : Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev Biol 256 : 317-330, 2003 https://doi.org/10.1016/S0012-1606(02)00137-9
  8. Fallon JF, Simandl BK : Evidence of a role for cell death in the disappearance of the embryonic human tail. Am J Anat 152 : 111-129, 1978 https://doi.org/10.1002/aja.1001520108
  9. Favier B, Rijli FM, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P : Functional cooperation between the non-paralogous genes Hoxa-10 and Hoxd-11 in the developing forelimb and axial skeleton. Development 122 : 449-460, 1996 https://doi.org/10.1242/dev.122.2.449
  10. Fleagle JG : Primate Adaptation and Evolution, ed 3. San Diego : Academic Press, 2012
  11. Fooden J : Comparative review of fascicularis-group species of macaques (Primates: Macaca). Fieldiana Zoology 2006 : 1-43, 2006
  12. Fooden J, Albrecht GH : Tail-length evolution in fascicularis-group macaques (Cercopithecidae: Macaca). Int J Primatol 20 : 431-440, 1999 https://doi.org/10.1023/A:1020556922189
  13. German RZ : The functional morphology of caudal vertebrae in New World monkeys. Am J Phys Anthropol 58 : 453-459, 1982 https://doi.org/10.1002/ajpa.1330580414
  14. Hall KR : Behaviour and ecology of the wild patas monkey, Erythrocebus patas, in Uganda. J Zool 148 : 15-87, 1966 https://doi.org/10.1111/j.1469-7998.1966.tb02942.x
  15. Harrison RG : On the occurrence of tails in man, with a description of the case reported by Dr. Watson. Bull Johns Hopkins Hosp 12 : 96-101, 1901
  16. Itani J : Takasakiyama no saru (Japanese monkeys in Takasakiyama) in Imanishi K (ed) : Nihon-Dobutsuki. Tokyo : Kobunsha, 1954
  17. Larson SG, Stern JT Jr : Maintenance of above-branch balance during primate arboreal quadrupedalism: coordinated use of forearm rotators and tail motion. Am J Phys Anthropol 129 : 71-81, 2006 https://doi.org/10.1002/ajpa.20236
  18. Maroto M, Bone RA, Dale JK : Somitogenesis. Development 139 : 2453-2456, 2012 https://doi.org/10.1242/dev.069310
  19. Nakatsukasa M, Tsujikawa H, Shimizu D, Takano T, Kunimatsu Y, Nakano Y, et al. : Definitive evidence for tail loss in Nacholapithecus, an East African Miocene hominoid. J Hum Evol 45 : 179-186, 2003 https://doi.org/10.1016/S0047-2484(03)00092-7
  20. Nakatsukasa M, Ward CV, Walker A, Teaford MF, Kunimatsu Y, Ogihara N : Tail loss in Proconsul heseloni. J Hum Evol 46 : 777-784, 2004 https://doi.org/10.1016/j.jhevol.2004.04.005
  21. Ojha PR : Tail carriage and dominance in the rhesus monkey, Macaca mulatta. Mammalia 38 : 163-170, 1974
  22. Organ JM : Structure and function of platyrrhine caudal vertebrae. Anat Rec (Hoboken) 293 : 730-745, 2010 https://doi.org/10.1002/ar.21129
  23. Roonwal ML, Tak PC : A field study of subspecific variation in tail form and carriage in the rhesus macaque, Macaca mulatta (Primates). South Asia Bull Zool Surv India 4 : 95-101, 1981
  24. Saga Y : The mechanism of somite formation in mice. Curr Opin Genet Dev 22 : 331-338, 2012 https://doi.org/10.1016/j.gde.2012.05.004
  25. Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H : Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128 : 4873-4880, 2001 https://doi.org/10.1242/dev.128.23.4873
  26. Shapiro LJ : Functional morphology of the vertebral column in primates in Gebo D (ed) : Postcranial Adaptation in Nonhuman Primates. DeKalb : Northern Illinois University Press, 1993, pp121-149
  27. Shapiro LJ : Functional morphology of indrid lumbar vertebrae. Am J Phys Anthropol 98 : 323-342, 1995 https://doi.org/10.1002/ajpa.1330980306
  28. Tojima S : Tail length estimation from sacrocaudal skeletal morphology in catarrhines. Anthropol Sci 121 : 13-24, 2013 https://doi.org/10.1537/ase.120813
  29. Tojima S : Variation of the number of proximal caudal vertebrae with tail reduction in old world monkeys. Primates 55 : 509-514, 2014 https://doi.org/10.1007/s10329-014-0429-z
  30. Tojima S : Comparative anatomy of caudal musculature attachments in catarrhines with different tail length. Primate Res 31 : 129-135, 2015 https://doi.org/10.2354/psj.31.016
  31. Tojima S, Makishima H, Takakuwa T, Yamada S : Tail reduction process during human embryonic development. J Anat 232 : 806-811, 2018 https://doi.org/10.1111/joa.12774
  32. Tojima S, Yamada S : Classification of the "human tail": correlation between position, associated anomalies, and causes. Clin Anat 33 : 929-942, 2020 https://doi.org/10.1002/ca.23609
  33. Wada N, Nakata A, Koga T, Tokuriki M : Anatomical structure and action of the tail muscles in the cat. J Vet Med Sci 56 : 1107-1112, 1994 https://doi.org/10.1292/jvms.56.1107
  34. Ward CV, Walker A, Teaford MF : Proconsul did not have a tail. J Hum Evol 21 : 215-220, 1991 https://doi.org/10.1016/0047-2484(91)90062-Z
  35. Wilson DR : Tail reduction in Macaca in Tuttle R (ed) : The Functional and Evolutionary Biology of Primates, ed 1. New York : Aldine, 1972, pp241-261
  36. Young T, Rowland JE, van de Ven C, Bialecka M, Novoa A, Carapuco M, et al. : Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 17 : 516-526, 2009 https://doi.org/10.1016/j.devcel.2009.08.010