DOI QR코드

DOI QR Code

Deoxidation of Off-grade Ti scrap by Molten Mg in YCl3-MgCl2 Molten Salt

YCl3-MgCl2 혼합 용융염 중 용융 Mg에 의한 Off-grade Ti 스크랩의 탈산

  • Jung, Jae-Heon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, So-Yeong (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, Sung-Hun (School of Materials Science and Engineering, Kyungpook National University) ;
  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • 정재헌 (경북대학교 신소재공학부) ;
  • 이소영 (경북대학교 신소재공학부) ;
  • 박성훈 (경북대학교 신소재공학부) ;
  • 손호상 (경북대학교 신소재공학부)
  • Received : 2021.03.18
  • Accepted : 2021.04.13
  • Published : 2021.04.30

Abstract

Off-grade Ti generated from smelting and mechanical processing has a high oxygen content. In this work, off-grade Ti was deoxidized using Mg and a chloride mixture as the reductant and flux, respectively. The experiments were conducted in the α-Ti temperature range (1,023~1,123 K) and the effects of the reaction time, reaction temperature, quantitiy of Mg and chloride ratio on deoxidation were investigated. Notably, when YCl3 is used as the flux to react with MgO, it is possible to reduce the activity of MgO. Therefore Ti can be deoxidized using Mg. In this study, the O content was decreased from 0.5 wt% to 0.1004 wt% at 1073 K, for 6 hours, with Mg=3.6 g and $X_{YCl_3}=0.22$.

타이타늄의 제련 및 가공 공정에서 산소 농도가 높은 off-grade 스크랩이 발생되고 있다. 본 연구에서 이러한 off-grade Ti 스크랩을 혼합 염화물을 플럭스로 사용하여 Mg으로 탈산하였다. 실험은 α-Ti 영역(1,023~1,123 K)에서 실시하였으며, 반응 시간, 반응 온도, Mg양, 염화물 비율의 영향에 대하여 조사하였다. 플럭스로 사용된 YCl3가 MgO와 반응하여 αMgO의 활동도를 낮추어 Mg에 의한 Ti의 탈산이 가능하였으며, 1,073 K, 6시간 조건에서 Mg=3.6 g, $X_{YCl_3}=0.22$ 일때 Ti scrap의 산소 농도가 0.5 %에서 최저 농도인 0.1117 %까지 감소하였다.

Keywords

References

  1. Sohn, Hosang, 2020 : Recycling of Common Metals, p.17, KNU Press, Daegu, Korea.
  2. Sohn, Ho-Sang, 2020 : Production Technology of Titanium by Kroll Process, J. of Korean Inst. of Resources Recycling, 29(4), pp.3-14. https://doi.org/10.7844/KIRR.2020.29.4.3
  3. Kroll, W., 1940 : The production of ductile titanium, Trans. Electrochem. Soc., 78, pp.35-47. https://doi.org/10.1149/1.3071290
  4. Sohn, Ho-Sang, 2021 : Current Status of Titanium Recycling Technology, Resources Recycling, 30(1), pp.26-34. https://doi.org/10.7844/KIRR.2021.30.1.26
  5. Takeda, O. and Okabe, T. H., 2019 : Current Status of Titanium Recycling and Related Technologies, JOM 71(6), pp.1981-1990. https://doi.org/10.1007/s11837-018-3278-1
  6. Duflos, R., 2016 : Titanium Aerospace demand & Integrated Supply Chain, in: Proceedings of Titanium USA 2016, Sep. 25-28, 2016, Scottsdale, AZ, USA, ITA.
  7. Yoon, Moo-Won and Sohn, Ho-Sang, 2013 : Deoxidation of Titanium Scrap by Calciothermic Reduction, J. of Korean Inst. of Resources Recycling, 22(6), pp.41-47. https://doi.org/10.7844/kirr.2013.22.6.41
  8. Oishi, T., Okabe, T. H. and Katsutoshi Ono, K., 1993 : Technology of deoxidation of titanium, Kekinzoku, 43(7), pp.392-400.
  9. Rotmann, B., Lochbichler, C., and Friedrich, B., 2011 : Challenges in Titanium Recycling - Do We Need a New Specification for Secondary Alloys?, Proc. of EMC 2011 Vol. 4, pp.1465-1480, June 26-28, Dusseldorf, Germany.
  10. Okabe, T. H., Zheng, C. and Taninouchi, Y., 2018 : Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals, Metall. Mater. Trans. B, 49B, pp.1056-1066.
  11. Takeda, O., Ouchi, T., and Okabe, T. H., 2020 : Recent Progress in Titanium Extraction and Recycling, Metall. Mater. Trans. B, 51B, pp.1315-1328. https://doi.org/10.1007/s11663-020-01898-6
  12. Iizuka, A., Ouchi, T., and Okabe, T. H., 2020 : Ultimate Deoxidation Method of Titanium-New Technology Using Rare Earth Oxyhalides, Titanium Japan, 68(3), pp.220-225.
  13. Murray, J. L., 1990 : Binary Alloy Phase Diagrams 2nd Ed. Vol. 3, p.2926. Ed. by Massalski, T. B., Okamoto, H, Subrdamanian, P. R., and Kacprzak, L., ASM International, Ohio, USA.
  14. Zhang, Y., Fang, Z. Z., Sun, P., et al., 2020 : Ch. 10 Deoxygenation of Ti metal, p.182, Extractive Metallurgy of Titanium ed. by Zhigang, Z. F., Froes, F. H., and Zhang, Y., Elsevier, Cambridge, US.
  15. Okabe, T. H., Hamanaka, Y., and Taninouchi, Y. K., 2019 : Direct oxygen removal technique for recycling titanium and its alloys by utilizing MgCl2 molten salt, Faraday Discussions, 190, pp.109-126. https://doi.org/10.1039/c5fd00229j
  16. Mah, A.D., Kelly, K., Gellert, N.L., et al., 1957 : Thermodynamics Properties of Titanium-Oxygen Solutions and Compounds, Report of Investigations 5316, Bureau of Mines, Department of the Interior, US.
  17. Barin, I., 1995 : Thermochemical Data of Pure Substance, 3rd ed., Wiley-VCH, Weinheim, Germany.
  18. Y.B. Patrikeev, G.I. Novikov, and V.V. Badovskii, 1973 : Thermal dissociation of scandium, yttrium and lanthanum oxide chlorides, Russ. J. Phys. Chem. 47, p.284.
  19. J.P. Gaviria and A.E. Bohe, 2010 : Carbochlorination of yttrium oxide, Thermochimica Acta, 509, pp.100-110. https://doi.org/10.1016/j.tca.2010.06.009
  20. Ji Liu, Xiaofeng Fan, Changqing Suna, et al., 2016 : Oxidation of the titanium(0,0,0,1) surface: diffusion processes of oxygen from DFT, RSC Adv., 6, pp.71311-71318. https://doi.org/10.1039/C6RA13877B
  21. Lucia Scotti and Alessandro Mottura, 2016 : Interstitial diffusion of O, N, and C in α-Ti from first-principles: Analytical model and kinetic Monte Carlo simulations, J. Chem. Phys., 144, 084701, pp.1-9.