DOI QR코드

DOI QR Code

Application of poly(vinyl acetate) and poly(1,4-butylene adipate) hydrophobic surface coatings on cementitious mortar specimens

  • Sanal, Irem (Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University) ;
  • Yalcin, Bestenur (Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University) ;
  • Yalcin, Ibrahim Ertugrul (Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University) ;
  • Arda, Lutfi (Department of Mechatronics Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University)
  • 투고 : 2020.05.22
  • 심사 : 2021.03.10
  • 발행 : 2021.04.25

초록

The main objective of this study is to characterize and evaluate the hydrophobic performance of polymer-based water-repellent coatings on cementitious mortar surfaces. Different concentrations of poly(vinyl acetate) (PVAc) and poly(1,4-butylene adipate) (PBA) were prepared in the laboratory and their applicability and performance was tested experimentally by water absorption test and analysis of surface contact angles of cementitious mortar specimens. According to the results of this study, it can be stated that incorporation of nano polymer particles on the surface of cementitious mortar specimens can enhance contact angles and reduce water absorption by increasing hydrophobicity. However, a dosage limit exists for polymer materials in coating, and observed hydrophobic improvements decreases when polymer dosage reached beyond the limit. Additionally, it is observed that water absorption of polymer coated cementitious mortars is closely related with the results of surface contact angle.

키워드

참고문헌

  1. Abu-Jdayil, B., Mourad, A.H., Hittini, W., Hassan, M. and Hameedi, S. (2019), "Traditional, state-of-the-art and renewable thermal building insulation materials: An overview", Constr. Build. Mater., 214, 709-735. https://doi.org/10.1016/j.conbuildmat.2019.04.102.
  2. Al-Kheetan, M.J., Al-Tarawneh, M.A., Ghaffar, S.H., Chougan, M., Jweihan, Y.S. and Rahman, M.M. (2021), "Resistance of hydrophobic concrete with different moisture contents to advanced freeze-thaw cycles", Struct. Concrete, 22, E1050-E1061. https://doi.org/10.1002/suco.202000214.
  3. Al-Kheetan, M.J., Rahman, M.M. and Chamberlain, D.A. (2019b), "Fundamental interaction of hydrophobic materials in concrete with different moisture contents in saline environment", Constr. Build. Mater., 207, 122-135. https://doi.org/10.1016/j.conbuildmat.2019.02.119.
  4. Al-Kheetan, M.J., Rahman, M.M. and Chamberlain, D.A. (2019c), "Moisture evaluation of concrete pavement treated with hydrophobic surface impregnants", Int. J. Pavement Eng., 1-9. https://doi.org/10.1080/10298436.2019.1567917.
  5. Al-Kheetan, M.J., Rahman, M.M., Balakrishna, M.N. and Chamberlain, D.A. (2019a), "Performance enhancement of selfcompacting concrete in saline environment by hydrophobic surface protection", Can. J. Civil Eng., 46(8), 677-686. https://doi.org/10.1139/cjce-2018-0546.
  6. Al-Kheetan, M.J., Rahman, M.M., Ghaffar, S.H. and Jweihan, Y.S. (2020), "Comprehensive investigation of the long-term performance of internally integrated concrete pavement with sodium acetate", Result. Eng., 6, 100110. https://doi.org/10.1016/j.rineng.2020.100110.
  7. Ammar, S., Ramesh, K., Vengadaesvaran, B., Ramesh, S. and Arof, A.K. (2016), "A novel coating material that uses nano-sized SiO2 particles to intensify hydrophobicity and corrosion protection properties", Electrochimica Acta, 220, 417-426. https://doi.org/10.1016/j.electacta.2016.10.099.
  8. Angst, U.M., Hooton, R.D., Marchand, J., Page, C.L., Flatt, R.J., Elsener, B. and Gulikers, J. (2012), "Present and future durability challenges for reinforced concrete structures", Mater. Corros., 63(12), 1047-1051. https://doi.org/10.1002/maco.201206898.
  9. Arabzadeh, A., Ceylan, H., Kim, S., Gopalakrishnan, K. and Sassani, A. (2016), "Superhydrophobic coatings on asphalt concrete surfaces", Tran. Res. Record: J. Tran. Res. Board, 2551. https://doi.org/10.3141/2551-02.
  10. Arabzadeh, A., Ceylan, H., Kim, S., Gopalakrishnan, K., Sassani, A., Sundararajan, S. and Taylor, P.C. (2017), "Superhydrophobic coatings on Portland cement concrete surfaces", Constr. Build. Mater., 141, 393-401. https://doi.org/10.1016/j.conbuildmat.2017.03.012.
  11. Aradi, T., Hornok, V. and Dekany, I. (2008), "Layered double hydroxides for ultrathin hybrid film preparation using layer-by-layer and spin coating methods", Coll. Surf. A: Physicochem. Eng. Aspect., 319(1-3), 116-121. https://doi.org/10.1016/j.colsurfa.2007.06.049.
  12. ASTM Standard C 1585-04 (2006), Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic - Cement Concretes, ASTM International.
  13. Bagherzadeh, M.R., Daneshvar, A. and Shariatpanahi, H. (2012), "Novel water-based nanosiloxane epoxy coating for corrosion protection of carbon steel", Surf. Coat. Technol., 206(8-9), 2057-2063. https://doi.org/10.1016/j.surfcoat.2011.05.036.
  14. Bai, Z., Li, G. and Liu, P. (2017), "Influences of organic film coatings modified by nano-silica on concrete carbonation resistance", Concrete, 4, 4-7.
  15. Beentjes, P.C.J., Van Den Brand, J. and De Wit, J.H.W. (2006), "Interaction of ester and acid groups containing organic compounds with iron oxide surfaces", J. Adhes. Sci. Technol., 20(1), 1-18. https://doi.org/10.1163/156856106775212396.
  16. Bormashenko, E., Pogreb, R., Whyman, G., Bormashenko, Y. and Erlich, M. (2007), "Vibration-induced Cassie-Wenzel wetting transition on rough surfaces", Appl. Phys. Lett., 90(20), 201917. https://doi.org/10.1063/1.2738364.
  17. Bormashenko, E.Y. (2018), Wetting of Real Surfaces, Vol. 19, Walter de Gruyter GmbH & Co KG.
  18. Buahom, P. (2018), "Measuring the contact angle using imageJ with contact angle plug-in".
  19. Cai, Y., Hou, P., Duan, C., Zhang, R., Zhou, Z., Cheng, X. and Shah, S. (2016), "The use of tetraethyl orthosilicate silane (TEOS) for surface-treatment of hardened cement-based materials: A comparison study with normal treatment agents", Constr. Build. Mater., 117, 144-151. https://doi.org/10.1016/j.conbuildmat.2016.05.028.
  20. Dai, J.G., Akira, Y., Wittmann, F.H., Yokota, H. and Zhang, P. (2010), "Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: the role of cracks", Cement Concrete Compos., 32(2), 101-109. https://doi.org/10.1016/j.cemconcomp.2009.11.001.
  21. De Vries, J., Polder, R.B. and Borsje, H. (1998), "Durability of hydrophobic treatment of concrete", Proceedings of the Second International Conference on Concrete under Severe Conditions, CONSEC, 98, 1341-1350.
  22. De Wit, F.M., Ozkanat, O., Mol, J.M.C., Terryn, H. and De Wit, J.H.W. (2010), "The influence of pre-treatments of aluminium alloys on bonding of PET coatings", Surf. Interf. Anal., 42(4), 316-320. https://doi.org/10.1002/sia.3228.
  23. Decocq, F. and Heymans, D. (1998), "High-quality vinyl-ester acrylic-based lattices", Paint Coat. Indus., 14(4), 56-65.
  24. Ershad-Langroudi, A., Fadaei, H. and Ahmadi, K. (2019), "Application of polymer coatings and nanoparticles in consolidation and hydrophobic treatment of stone monuments", Iran. Polym. J., 28(1), 1-19. https://doi.org/10.1007/s13726-018-0673-y.
  25. Flores-Vivian, I., Hejazi, V., Kozhukhova, M. I., Nosonovsky, M. and Sobolev, K. (2013), "Self-assembling particle-siloxane coatings for superhydrophobic concrete", ACS Appl. Mater. Interf., 5(24), 13284-13294. https://doi.org/10.1021/am404272v.
  26. Gao, Y., Xu, Y., Zeng, W., Fang, Z., Duan, K., Pei, G. and Zhou, W. (2020), "Salt-frost resistance and mechanism analysis of super-hydrophobic pavement cement concrete for different deicing salts", Road Mater. Pavem. Des., 1-22. https://doi.org/10.1080/14680629.2020.1727551.
  27. Guneyisi, E., Gesoglu, M. and Ozbay, E. (2011), "Permeation properties of self-consolidating concretes with mineral admixtures", ACI Mater. J., 108(2), 150.
  28. Herb, H., Gerdes, A. and Brenner-WeiB, G. (2015), "Characterization of silane-based hydrophobic admixtures in concrete using TOF-MS", Cement Concrete Res., 70, 77-82. https://doi.org/10.1016/j.cemconres.2015.01.008.
  29. Hou, P., Cheng, X., Qian, J. and Shah, S.P. (2014), "Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nano SiO2 and its precursor", Constr. Build. Mater., 53, 66-73. https://doi.org/10.1016/j.conbuildmat.2013.11.062.
  30. Huang, H., Ye, G., Qian, C. and Schlangen, E. (2016), "Self-healing in cementitious materials: Materials, methods and service conditions", Mater. Des., 92, 499-511. https://doi.org/10.1016/j.matdes.2015.12.091.
  31. Koch, K. and Barthlott, W. (2009), "Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials", Philos. Tran. Royal Soc. A: Math. Phys. Eng. Sci., 367(1893), 1487-1509. https://doi.org/10.1098/rsta.2009.0022.
  32. Krzysztof, S. (2020), "A new image analysis algorithm for contact angle measurement at high temperature", Meas. Sci. Technol., 31, 035403. https://doi.org/10.1088/1361-6501/ab52b3
  33. Liu, Z. and Hansen, W. (2016), "Effect of hydrophobic surface treatment on freeze-thaw durability of concrete", Cement Concrete Compos., 69, 49-60. https://doi.org/10.1016/j.cemconcomp.2016.03.001.
  34. Marmur, A. (2009), "A guide to the equilibrium contact angles maze", Contact Angle Wettab. Adhes., 6, 3-18.
  35. Mignon, A., Snoeck, D., Dubruel, P., Van Vlierberghe, S. and De Belie, N. (2017), "Crack mitigation in concrete: superabsorbent polymers as key to success?", Mater., 10(3), 237. https://doi.org/10.3390/ma10030237.
  36. Muller, H.S., Haist, M. and Vogel, M. (2014), "Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime", Constr. Build. Mater., 67, 321-337. https://doi.org/10.1016/j.conbuildmat.2014.01.039.
  37. Muzenski, S., Flores-Vivian, I., Sobolev, K. (2014), "The development of hydrophobic and superhydrophobic cementitious composites", Proceedings of the 4th International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, USA, July.
  38. Neville, A.M. (1995), Properties of Concrete, Vol. 4, Longman, London.
  39. Nezerka, V., Somr, M. and Trejbal, J. (2018), "Contact angle measurement tool based on image analysis", Exp. Tech., 42, 271-278. https://doi.org/10.1007/s40799-017-0231-0.
  40. Nurkhamidah, S. and Woo, E.M. (2011), "Phase-separation-induced single-crystal morphology in poly (l-lactic acid) blended with poly (1, 4-butylene adipate) at specific composition", J. Phys. Chem. B, 115(45), 13127-13138. https://doi.org/10.1021/jp206122x.
  41. Scarfato, P., Di Maio, L., Fariello, M.L., Russo, P. and Incarnato, L. (2012), "Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement", Cement Concrete Compos., 34(3), 297-305. https://doi.org/10.1016/j.cemconcomp.2011.11.006.
  42. Schrofl, C., Mechtcherine, V., Kaestner, A., Vontobel, P., Hovind, J. and Lehmann, E. (2015), "Transport of water through strain-hardening cement-based composite (SHCC) applied on top of cracked reinforced concrete slabs with and without hydrophobization of cracks-Investigation by neutron radiography", Constr. Build. Mater., 76, 70-86. https://doi.org/10.1016/j.conbuildmat.2014.11.062.
  43. Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  44. Simpson, J.T., Hunter, S.R. and Aytug, T. (2015), "Superhydrophobic materials and coatings: A review", Report. Prog. Phys., 78(8), 086501. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  45. Singh, H. and Gupta, R. (2020), "Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV", J. Build. Eng., 28, 101090. https://doi.org/10.1016/j.jobe.2019.101090.
  46. Slinckx, M.M.C.P. and Scholten, H.P.H. (1994), "Veova-9/(meth) acrylates, a new class of emulsion copolymers", Surf. Coat. Int., 77(3), 107.
  47. Song, Z., Xue, X., Li, Y., Yang, J., He, Z., Shen, S. and Qu, J. (2016), "Experimental exploration of the waterproofing mechanism of inorganic sodium silicate-based concrete sealers", Constr. Build. Mater., 104, 276-283. https://doi.org/10.1016/j.conbuildmat.2015.12.069.
  48. Stefanidou, M., Matziaris, K. and Karagiannis, G. (2013), "Hydrophobization by means of nanotechnology on Greek sandstones used as building facades", Geosci., 3(1), 30-45. https://doi.org/10.3390/geosciences3010030.
  49. Strubing, S., Metz, H. and Mader, K. (2008), "Characterization of poly (vinyl acetate) based floating matrix tablets", J. Control. Release, 126(2), 149-155. https://doi.org/10.1016/j.jconrel.2007.11.013.
  50. Szafraniec, M., Barnat-Hunek, D., Grzegorczyk-Franczak, M. and Trochonowicz, M. (2020), "Surface modification of lightweight mortars by nanopolymers to improve their water-repellency and durability", Mater., 13(6), 1350. https://doi.org/10.3390/ma13061350.
  51. Ton-That, T.M. and Jungnickel, B.J. (1999), "Water diffusion into transcrystalline layers on polypropylene", J. Appl. Polym. Sci., 74(13), 3275-3285. https://doi.org/10.1002/(SICI)1097-4628(19991220)74:13<3275::AID-APP31>3.0.CO;2-2.
  52. Van den Brand, J., Blajiev, O., Beentjes, P.C.J., Terryn, H., De Wit, J.H.W. (2004), "Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy", Langmuir, 20(15), 6318-6326. https://doi.org/10.1021/la049456a.
  53. Weisheit, S., Unterberger, S.H., Bader, T. and Lackner, R. (2016), "Assessment of test methods for characterizing the hydrophobic nature of surface-treated high performance concrete", Constr. Build. Mater., 110, 145-153. https://doi.org/10.1016/j.conbuildmat.2016.02.010.
  54. Wernecke, R. and Wernecke, J. (2014), "Water substance of life", Industrial Moisture and Humidity Measurement.
  55. Zhang, P., Cong, Y., Vogel, M., Liu, Z., Muller, H.S., Zhu, Y. and Zhao, T. (2017), "Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation", Constr. Build. Mater., 148, 113-121. https://doi.org/10.1016/j.conbuildmat.2017.05.078.
  56. Zhao, Y., Liu, Y., Liu, Q., Guo, W., Yang, L. and Ge, D. (2018), "Icephobicity studies of superhydrophobic coatings on concrete via spray method", Mater. Lett., 233, 263-266. https://doi.org/10.1016/j.matlet.2018.09.008.