• 제목/요약/키워드: cementitious mortar

검색결과 111건 처리시간 0.018초

Application of poly(vinyl acetate) and poly(1,4-butylene adipate) hydrophobic surface coatings on cementitious mortar specimens

  • Sanal, Irem;Yalcin, Bestenur;Yalcin, Ibrahim Ertugrul;Arda, Lutfi
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.323-333
    • /
    • 2021
  • The main objective of this study is to characterize and evaluate the hydrophobic performance of polymer-based water-repellent coatings on cementitious mortar surfaces. Different concentrations of poly(vinyl acetate) (PVAc) and poly(1,4-butylene adipate) (PBA) were prepared in the laboratory and their applicability and performance was tested experimentally by water absorption test and analysis of surface contact angles of cementitious mortar specimens. According to the results of this study, it can be stated that incorporation of nano polymer particles on the surface of cementitious mortar specimens can enhance contact angles and reduce water absorption by increasing hydrophobicity. However, a dosage limit exists for polymer materials in coating, and observed hydrophobic improvements decreases when polymer dosage reached beyond the limit. Additionally, it is observed that water absorption of polymer coated cementitious mortars is closely related with the results of surface contact angle.

혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구 (A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials)

  • 박차원;강병희
    • 한국건축시공학회지
    • /
    • 제4권4호
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

폐콘크리트계 미분말의 소성조건에따른 수화성 회복 (Recovering Hydration Performance of Cementitious Powder by Concret Waste according to Burning Temperature)

  • 강태훈;정민수;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.81-87
    • /
    • 2003
  • The purpose of this study is the development of a recycling process to recover the hydrated ability of cement hydrate which accounts for a large proportion of cementitious powder by concrete waste in order to recycle cementitious powder by concrete waste as recycle cement. Therefore, after having theoretical consideration based on the properties of high-heated concrete, we consider the properties of hydration of cementitious powder in hardened mortar under various temperature conditions. As a result of experiment, it is revealed that an effective development of recycling cement is possible since the cementitious powder by concrete waste recovers a hydraulic property during burning at $600^{\circ}C$ or $700^{\circ}C$. And it is shown that the fluidity of mortar decreases rapidly as the burning temperature of recycle cement increases. however, the improved effect of fluidity is predominant if adding the additive such as fly-ash or blast furnace slag.

  • PDF

Effect of Cementitious Materials on Compressive Strength and Self-healing Properties of Cement Mortars Containing Chitosan-Based Polymer

  • Jae-In Lee;Chae-Young Kim;Joo-Ho Yoon;Se-Jin Choi
    • Architectural research
    • /
    • 제25권3호
    • /
    • pp.53-59
    • /
    • 2023
  • Concrete is widely used in the construction industry; however, it has the disadvantage of deteriorating durability due to cracks occurring because of climate change and shrinkage. In addition, when cement is used as a binder, CO2 emitted during the manu-facturing process accounts for ~8% of global CO2 emissions. In this study, ecofriendly cementitious materials such as blast furnace slag powder and fly ash (FA) were used as cement substitutes in the production of mortar containing a chitosan-based polymer (CP), and their fluidity, compressive strength, and self-healing performance were examined. The 28-day compressive strength of the control sample was ~32.4 MPa (the lowest for all tested samples), while that of the sample containing 5% CP and 20% FA was ~49.6 MPa (the highest for all tested samples) and ~53.1% higher than that of the control sample. Even at a healing age of 56 days, the control sample exhibited the lowest healing performance, whereas the samples containing CP (5%, 10%) and 20% FA demonstrated excellent healing performance. After 28 days, the decrease in crack size for the control sample was minimal; however, for the sample containing only cement and CP, a significant decrease in crack size was observed even after 28 days. This study confirmed that the appropriate use of CP and cementitious materials improves not only compressive strength but also the selfhealing performance of mortar.

혼화재에 따른 모르타르 건조수축-비교 연구 (Effects of supplementary cementitious materials on drying shrinkage of cement mortar - a comparative study)

  • 최훈제;최성규;박충훈;김백중;이종구;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.158-159
    • /
    • 2013
  • In this study, effects of supplementary cementitious materials(fly ash, blast furnace slag and waste glass) on drying shrinkage of cement mortar were compared and evaluated. The results showed drying shrinkage of cement mortar using blast furnace slag and waste glass is larger than shrinkage due to capillary pressure, while using fly ash is smaller.

  • PDF

석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구 (A Study on the Basic Properties of Cement Mortar Using Limestone Powder)

  • 강인규;라정민;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

폐콘크리트의 순환이용을 위한 폐미분말의 재활용 기술 (Recycling Technology of Cementitious Powder for Completely Recycling of Concrete Waste)

  • 박차원;강병희
    • 한국건축시공학회지
    • /
    • 제5권3호
    • /
    • pp.109-116
    • /
    • 2005
  • Recently, there have been many studies seeking towards the utilization of cementitious powder from concrete waste as recycled cement. However, most of the studies actually have been researches about the reuse of mortar or paste, not concrete waste. In fact, either mortar or paste is quite different from a real concrete waste in terms of age and mixture. Thus the purpose of this study is to examine basic physical properties of recycled cement, manufactured with cementitious powder from concrete waste, and analyze differences in chemical and hydraulic properties of the cement and its tested model. As a result of the chemical analysis, recycle cement is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than Portland cement, which is also supported by previous studies. But, Differently from previous studies, calcining temperature of 650 was found an optimal condition under which cementitious powder from concrete waste could restore its hydraulic properties.

폐콘크리트 부산 미분말을 이용한 재생시멘트의 수화특성 (Hydraulic Properties of the Recycled Cement used Cementitious Powder by Concrete Waste)

  • 서경호;박차원;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.69-72
    • /
    • 2005
  • Recently, there have been many studies seeking towards the utilization of cementitious powder from concrete waste as recycle cement. However, most of the studies actually have been researches about the reuse of mortar or paste, not concrete waste. In fact, either mortar or paste is quite different from a real concrete waste in terms of age and mixture. Thus the purpose of this study is to examine basic physical properties of recycle cement, manufactured with cementitious powder from concrete waste, and analyze differences in chemical and hydraulic properties of the cement and its tested model. As a result of the chemicai analysis, recycle cement is composed mainly of CaO and SiO2, and that it is even lower in the content of CaO than Portland cement, which is also supported by previous studies. But, Differently from previous studies, plastic working at the temperature of 650 was found an optimal condition under which cementitious powder from concrete waste could restore its hydraulic properties.

  • PDF

각종 유지류에 침지된 혼화재 치환 시멘트 모르타르의 열화특성 (Degradation of Cement Mortar with Supplementary Cementitious Materials Submerged in Various Oils)

  • 한천구;황찬우
    • 한국건설순환자원학회논문집
    • /
    • 제5권2호
    • /
    • pp.137-143
    • /
    • 2017
  • 기존의 경우 콘크리트 내구성에 관한 연구는 다양하게 많은 량이 진행된바 있다. 특히 화학적 침식에 관한 연구로는 산 알칼리, 황산염에 대한 침식저항성의 연구가 활발히 진행되었다. 하지만 유지류에 관한 연구로, 특히 각종 유지류의 종류가 혼화재 치환 모르타르에 어떠한 영향을 미치는지에 관해서는 거의 연구되지 않았다. 따라서 본 연구에서는 FA 및 BS의 혼화재 치환 시멘트 모르타르가 각종 유지류에 침지될 경우 나타나는 열화특성에 관하여 연구하였다. 실험결과 유지류 종류 중에서는 지방산 함유량이 높을수록, 특히 BD(바이오디젤)의 경우가 모든 혼화재 치환 시멘트 모르타르의 열화를 가장 크게 일으키는 것으로 나타났고, 혼화재 치환을 한 모르타르의 경우는 OPC(보통포틀랜드시멘트)보다 BS 및 FA치환 모르타르의 경우에서 열화가 더 크게 나타나는 것을 알 수 있었다.

Microstructure and mechanical behavior of cementitious composites with multi-scale additives

  • Irshidat, Mohammad R.;Al-Nuaimi, Nasser;Rabie, Mohamed
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.163-171
    • /
    • 2021
  • This paper studies the effect of using multi-scale reinforcement additives on mechanical strengths, damage performance, microstructure, and water absorption of cementitious composites. Small dosages of carbon nanotubes (CNTs) or polypropylene (PP) microfibers; 0.05%, 0.1%, and 0.2% by weight of cement; were added either separately or simultaneously into cement mortar. The experimental results show the ability of these additives to enhance the mechanical behavior of the mortar. The best improvement in compressive and flexural strengths of cement mortar reaches 28% in the case of adding a combination of 0.1% CNTs and 0.2% PP fibers for compression, and a combination of 0.2% CNTs and 0.2% PP fibers for flexure. Adding CNTs does not change the brittle mode of failure of plain mortar whereas the presence of PP fibers changes it into ductile failure and clearly enhances the fracture energy of the specimens. Scanning electron microscopic (SEM) images of the fracture surfaces highlights the role of CNTs in improving the adhesion between the PP fibers and the hydration products and thus enhance the ability of the fibers to mitigate cracks propagation and to enhance the mechanical performance of the mortar.