DOI QR코드

DOI QR Code

미세먼지(PM2.5)로 유도된 세포(비강, 폐, 뇌)독성에 대한 청각(Codium fragile)의 보호효과

Protective effect of Codium fragile extract on fine dust (PM2.5)-induced toxicity in nasal cavity, lung, and brain cells

  • 김길한 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 박선경 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 강진용 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김종민 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 신은진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 문종현 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 김민지 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 이효림 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 정혜린 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원) ;
  • 허호진 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구원)
  • Kim, Gil Han (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jong Min (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Shin, Eun Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Moon, Jong Hyeon (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Min Ji (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Hyo Lim (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Jeong, Hye Rin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2020.12.31
  • 심사 : 2021.02.22
  • 발행 : 2021.04.30

초록

본 연구에서는 미세먼지로 유도될 수 있는 질환에 대한 예방 소재로써 청각(C. fragile)의 산업적 활용 가능성을 확인하고자 하였다. 청각의 총 페놀성 화합물 함량 및 지방질과산화 억제 효과는 40% 에탄올 추출물이 가장 우수한 결과를 나타냈고, 총 polysaccharide 함량에서는 물 추출물이 가장 높은 함량을 나타냈다. 미세먼지 유도성 산화적 손상에 대한 비강(RPMI2650), 폐(A549), 뇌신경(MC-IXC), 해마(HT-22), 미세아교(BV-2)세포에서의 세포보호 효과를 검증하기 위하여 세포 내 ROS 형성 억제 효과와 세포사멸 억제 효과를 측정하였다. 세포 내 ROS 형성 억제효과 실험 결과에서 40% 에탄올 추출물이 전반적으로 우수한 활성을 나타내는 것으로 확인되었다. 세포사멸 억제 효과 실험 결과에서는 물 추출물이 전반적으로 우수한 세포 생존율을 나타냈고, 40% 에탄올 추출물은 뇌신경세포(MC-IXC)을 제외한 세포에서 사멸 억제 효과가 미비하거나 농도가 높아짐에 따라서 세포독성을 일부 갖는 것으로 확인되었다. 결과적으로, 청각 추출물은 비강, 폐, 뇌(신경, 해마, 미세아교) 세포에서 미세먼지로 유도된 산화적 손상을 효과적으로 억제할 수 있는 천연 소재로서 산업적 활용 가능성이 기대된다.

To evaluate the protective effect of Codium fragile on fine dust (PM2.5)-induced cytotoxicity, we investigated its antioxidant activity and cell protective effect on PM2.5-exposed cells. The 40% ethanolic extract of C. fragile showed the highest total phenolic content, whereas the water extract of C. fragile showed the highest total polysaccharide content. The protective effect of the extracts on PM2.5-induced oxidative damage in nasal cavity (RPMI2650), lung (A549), brain (MC-IXC), hippocampus (HT-22), and microglia (BV-2) cells was evaluated by measuring the intracellular reactive oxygen species (ROS) content and cell viability. The results showed that the 40% ethanolic extract more efficiently inhibited ROS production than the water extract. In contrast, PM2.5-exposed cells treated with the water extract showed higher viability than those treated with the 40% ethanolic extract.

키워드

참고문헌

  1. Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, Navab M, Harkema J, Sioutas C, Lusis AJ, Nel AE. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ. Res., 102: 589-596 (2008) https://doi.org/10.1161/CIRCRESAHA.107.164970
  2. Block ML, Calderon-Garciduenas L. Air Pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci., 32: 506-516 (2009) https://doi.org/10.1016/j.tins.2009.05.009
  3. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendz LB, Kleinman M. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology, 26: 133-140 (2005) https://doi.org/10.1016/j.neuro.2004.08.003
  4. Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ. Health Persp., 124: 1537-1546 (2016) https://doi.org/10.1289/ehp134
  5. Hajipour S, Farbood Y, Gharib-Naseri MK, Goudarzi G, Rashno M, Maleki H, Bakhtiari N, Nesari A, Khoshnam SE, Dianat M, Sarkaki B, Sarkaki A. Exposure to ambient dusty particulate matter impairs spatial memory and hippocampal LTP by increasing brain inflammation and oxidative stress in rats. Life Sci., 242 (2020)
  6. Hwang SS, Kwon HJ, Cho SH. Effects of the severe Asian dust events on daily mortality during the spring of 2002, in Seoul, Korea. J. Prev. Med. Public Health, 38: 197-202 (2005)
  7. Juarez-Portilla C, Olivares-Banuelos T, Molina-Jimenez T, Sanchez-Salcedo JA, Del Moral DI, Meza-Menchaca T, Flores-Munoz M, opez-Franco O, Roldan-Roldan G, Ortega A, Zepedaa RC. Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. Phytomedicine, 63 (2019)
  8. Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 81: 321-326 (2003) https://doi.org/10.1016/S0308-8146(02)00423-5
  9. Kim JH, Kang HM, Lee SH, Lee JY, Park LY. Antioxidant and α-glucosidase inhibition activity of seaweed extracts. Korean J. Food Preserv., 22: 290-296 (2015) https://doi.org/10.11002/KJFP.2015.22.2.290
  10. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ. Int., 74: 136-143 (2015) https://doi.org/10.1016/j.envint.2014.10.005
  11. Kolsi RBA, Jardak N, Hajkacem F, Chaaben, R, Jribi I, Feki AEI, Rebai T, Jamoussi K, Fki A, Belghith H. Anti-obesity effect and protection of liver-kidney functions by Codium fragile sulphated polysaccharide on high fat diet induced obese rats. Int. J. Biol. Macromol., 102: 119-129 (2017) https://doi.org/10.1016/j.ijbiomac.2017.04.017
  12. Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH. Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia, 86: 54-63 (2013) https://doi.org/10.1016/j.fitote.2013.01.020
  13. Lee SA, Moon SM, Choi YH, Han SH, Park BR, Choi MS, et al. S. Aqueous extract of Codium fragile suppressed inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and carrageenan-induced rats. Biomed. Pharmacother., 93: 1055-1064 (2017) https://doi.org/10.1016/j.biopha.2017.07.026
  14. Lippmann M, Frampton M, Schwartz M, Dockery J, Schlesinger D, Koutrakis P, Froines J, Nel A, Finkelstein J, Godleski J, Kaufman J, Koenig J, Larson T, Luchtel D, L-J Sally Liu, Oberdorster G, Peters A, Sarnat J, Sioutas C, Suh H, Sullivan J, Utell M, Wichmann E, Zelikoff J. The US environmental protection agency particulate matter health effects research centers program: A midcourse report of status, progress, and plans. Environ. Health Persp., 111: 1074-1092 (2003) https://doi.org/10.1289/ehp.5750
  15. Moon SM, Lee SA, Han SH, Park BR, Choi MS, Kim JS, Kim SG, Kim HJ, Chun HS, Kim DK, Kim CS. Aqueous extract of Codium fragile alleviates osteoarthritis through the MAPK/NF-κB pathways in IL-1β-induced rat primary chondrocytes and a rat osteoarthritis model. Biomed. Pharmacother., 97: 264-270 (2018) https://doi.org/10.1016/j.biopha.2017.10.130
  16. Oh SH, Ryu B, Ngo DH, Kim WS, Kim DG, Kim SK. 4-hydroxybenzaldehyde-chitooligomers suppresses H2O2-induced oxidative damage in microglia BV-2 cells. Carbohyd. Res, 440: 32-37 (2017) https://doi.org/10.1016/j.carres.2017.01.007
  17. Park SK, Kang JY, Kim JM, Han HJ, Shin EJ, Heo HJ. Improving effect of Porphyra tenera extract on ultra-fine dust-mediated inflammation. J. Korean Soc. Food Sci. Nutr., 49: 295-303 (2020) https://doi.org/10.3746/jkfn.2020.49.3.295
  18. Park SK, Kang JY, Kim JM, Yoo SK, Han HJ, Shin EJ, Heo HJ. Cellular protective effect of Ecklonia cava extract on ultra-fine dust (PM2.5)-induced cytoxicity. Korean J. Food Sci. Technol., 51: 503-508 (2019) https://doi.org/10.9721/KJFST.2019.51.5.503
  19. Shin DC. Health effects of ambient particulate matter. J. Korean Med. Assoc., 50: 175-182 (2007) https://doi.org/10.5124/jkma.2007.50.2.175
  20. Song Y, Ichinose T, He M, He C, Morita K, Yoshida Y. Lipopolysaccharide attached to urban particulate matter 10 suppresses immune responses in splenocytes while particulate matter itself activates NF-κB. Toxicol. Res.-UK, 5: 1445-1452 (2016) https://doi.org/10.1039/C6TX00216A
  21. Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Heal. C, 26: 339-362 (2008) https://doi.org/10.1080/10590500802494538
  22. Wang L, Oh JY, Je JG, Jayawardena TU, Kim YS, Ko JY, et al. Protective effects of sulfated polysaccharides isolated from the enzymatic digest of Codium fragile against hydrogen peroxide-induced oxidative stress in in vitro and in vivo models. Algal Res., 48: 101891 (2020) https://doi.org/10.1016/j.algal.2020.101891
  23. Xia T, Kovochich M, Nel AE. Impairment of mitochondrial function by particulate matter (PM) and their toxic components: Implications for PM-induced cardiovascular and lung disease. Front. Biosci., 12: 1238 (2007) https://doi.org/10.2741/2142
  24. Yoon HD, Jeong EJ, Choi JW, Lee MS, Park MA, Yoon NY, Kim YK, Cho DM, Kim JI, Kim HR. Anti-inflammatory effects of ethanolic extracts from Codium fragile on LPS-stimulated RAW264.7 macrophages via nuclear factor kappaB inactivation. Fish. aqua. sci., 14: 267-274 (2011) https://doi.org/10.5657/FAS.2011.0267