DOI QR코드

DOI QR Code

고지방식이로 유도된 C57BL/6 mice에서 감국이 미치는 비만억제 효과

Anti-obesity effects of Chrysanthemum indicum L. in C57BL/6 mice induced by high fat diet

  • 투고 : 2021.02.28
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

감국의 유산균 발효를 통한 감국 배양물(CILL)의 비만억제 식품의 소재로서 가능성을 알아보기 위해 고지방식이로 유도된 C57BL/6 mice에서의 체중, body fat mass, T cell 등을 측정하였다. 체중 변화에서 CILL 군 (25.15±2.44 g)은 4주부터 체중 감소를 보였으며, 1주차부터 8주차까지 낮은 증체량을 유지했다(1.00±0.53 g). 8주 체중(30.38±4.17 g)은 HFD 군(60% high fat diet, 34.99±2.09 g) 대비 13.15%의 체중 감소를 보였다. Fat mass는 10.3022±2.8813 g로 감소했으며, 간 절대 중량에서 HFD 군에 비해 감소하였다. CD4+ T cell 4.84±1.33%, CD8+ T cell 7.02±2.26%, CD4+CD8+ T cell 1.46±0.81%로 HFD 군에 비해 높게 측정되었다. 결과적으로 CILL은 비만억제 효과가 있으며, CILL내의 비만억제 물질을 선별한다면 효과적인 비만억제 식품 소재로서의 가능성이 있을 것으로 사료된다.

In order to determine the possibility that Chrysanthemum indicum L. cultured with Lactococcus lactis (CILL) is a material for obesity suppression food, the body weight, body fat mass, and T cells were determined in C57BL/6 mice induced by a high fat diet. The CILL (25.15±2.44 g) demonstrated weight loss from week 4 onward and maintained a low weight gain from week 1 to week 8 (1.00±0.53 g). The 8-week body weight (30.38±4.17 g) indicated loss of 13.15% when compared to the HFD (60% high fat diet, 34.99±2.09 g). Fat mass decreased to 10.3022±2.8813 g, and the absolute liver weight decreased relative to that in the HFD. CD4+ T cells were 4.84±1.33%, CD8+ T cells 7.02±2.26%, and CD4+CD8+ T cells 1.46±0.81%, which were all higher than those in the HFD. As a result, CILL can be used as a material for preventing obesity as an effective measure toward reducing weight when consumed orally.

키워드

참고문헌

  1. Y. C. Chooi, C. Ding & F. Magkos. (2019). The epidemiology of obesity. Metabolism, 92, 6-10. DOI : 10.1016/j.metabol.2018.09.005
  2. S. Kahan & J. E. Manson. (2019). Obesity treatment, beyond the guidelines: Practical suggestions for clinical practice. JAMA, 321(14), 1349-1350. DOI : 10.1001/jama.2019.2352
  3. M. Rubinstein & M. J. Low. (2017). Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett, 591(17), 2593-2606. DOI : 10.1002/1873-3468.12776
  4. H. Y. Lee, R. H. Kang, S. H. Cho, S. S. Kim & Y. S. Kim. (2009). Effects of platycodin D on gene expressions of pro-adipogenic and anti-adipogenic regulators in 3T3-L1 cells. Journal of Life Science, 19(12), 1802-1807. DOI : 10.5352/JLS.2009.19.12.1802
  5. E. D. Rosen & O. A. MacDougald. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 7(12), 885-896. DOI : 10.1038/nrm2066
  6. M. Park & S. Y. Woo. (2016). Inflammation in Obesity. J Bacteriol Virol, 46(4). DOI : 10.4167/jbv.2016.46.4.343
  7. A. C. Skinner, M. J. Steiner, F. W. Henderson & E. M. Perrin. (2010). Multiple markers of inflammation and weight status: Cross-sectional analyses throughout childhood. Pediatrics, 125(4), e801-809. DOI : 10.1542/peds.2009-2182
  8. A. L. de la Garza, F. I. Milagro, N. Boque, J. Campion & J. A. Martinez. (2011). Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med, 77(8), 773-785. DOI : 10.1055/s-0030-1270924
  9. J. Yin, H. Zhang & J. Ye. (2008). Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets, 8(2), 99-111. DOI : 10.2174/187153008784534330
  10. L. C. Lew, S. B. Choi, B. Y. Khoo, S. Sreenivasan, K. L. Ong & M. T. Liong. (2018). Lactobacillus plantarum DR7 Reduces cholesterol via phosphorylation of AMPK that down-regulated the mRNA expression of HMG-CoA reductase. Korean J Food Sci of Anim Resour, 38(2), 350-361. DOI : 10.5851/kosfa.2018.38.2.350
  11. L. H. Chen, Y. H. Chen, K. C. Cheng, T. Y. Chien, C. H. Chan, S. P. Tsao & H. Y. Huang. (2018). Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats. J Nutr Biochem, 54, 87-94. DOI : 10.1016/j.jnutbio.2017.11.004
  12. J. Y. Choi, J. S. Lim, J. B. Lee & Y. H. Yang. (2020). Camphor inhibits adipocyte differentiation via its impact on SMO-dependent regulation of hedgehog signaling. Journal of Life Science, 30(11), 973-982. DOI : 10.5352/JLS.2020.30.11.973
  13. J. Y. Choi, J. S. Lim, B. R. Sim & Y. H. Yang. (2020). Inhibitory effect of lactic acid bacteria-fermented Chrysanthemum indicum L. on adipocyte differentiation through hedgehog signaling. Journal of Life Science, 30(6), 532-541. DOI : 10.5352/JLS.2020.30.6.532
  14. M. R. Lee, J. E. Kim, J. Y. Choi, J. J. Park, H. R. Kim, B. R. Song, Y. W. Choi, K. M. Kim, H. Song & D. Y. Hwang. (2019). Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris. Exp Ther Med, 17(3), 2185-2193. DOI : 10.3892/etm.2019.7191
  15. K. A. Oluyemi, I. O. Omotuyi, O. R. Jimoh, O. A. Adesanya, C. L. Saalu & S. J. Josiah. (2007). Erythropoietic and anti-obesity effects of Garcinia cambogia (bitter kola) in Wistar rats. Biotechnol Appl Biochem, 46(Pt 1), 69-72. DOI : 10.1042/BA20060105
  16. M. Saito, M. Ueno, S. Ogino, K. Kubo, J. Nagata & M. Takeuchi. (2005). High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem Toxicol, 43(3), 411-419. DOI : 10.1016/j.fct.2004.11.008
  17. J. Y. Cha, S. Nepali, H. Y. Lee, S. W. Hwang, S. Y. Choi, J. M. Yeon, B. J. Song, D. K. Kim & Y. M. Lee. (2018). Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med, 15(6), 5070-5076. DOI : 10.3892/etm.2018.6042
  18. S. Nepali, J. Y. Cha, H. H. Ki, H. Y. Lee, Y. H. Kim, D. K. Kim, B. J. Song & Y. M. Lee. (2018). Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-diet-induced obese mice. Am J Chin Med, 46(1), 119-136. DOI : 10.1142/S0192415X18500076
  19. Y. Xu, M. Zhang, T. Wu, S. D. Dai, J. Xu & Z. Zhou. (2015). The anti-obesity effect of green tea polysaccharide, polyphenols and caffeine in rats fed with a high-fat-diet. Food Funct, 6(1), 297-304. DOI : 10.1039/c4fo00970c.
  20. T. Ohara, K. Muroyama, Y. Yamamoto & S. Murosaki. (2015). A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother Res, 29(2), 310-316. DOI : 10.1002/ptr.5258
  21. K. S. Park. (2015). Raspberry ketone, a naturally occurring phenolic compound, inhibits adipogenic and lipogenic gene expression in 3T3-L1 adipocytes. Pharm Biol, 53(6), 870-875. DOI : 10.3109/13880209.2014.946059
  22. T. H. Park, Y. D. Kim, D. K. Kim & J. I. Park. (2001). Subject the effect of apolipoprotein E overexpression on plasma lipoprotein profile in mice fed on long-term high cholesterol diet. Korean Circ J, 31(9), 918-929. DOI : 10.4070/kcj.2001.31.9.918
  23. Y. S. Lee, D. Y. Lee, D. Y. Kwon & O. H. Kang. (2020). Improvement effect of non-alcoholic fatty liver disease by Curcuma longa L. extract. Korean J Medicinal Crop Sci, 28(4), 276-286. DOI : 10.7783/kjmcs.2020.28.4.276
  24. S. R. Kim & S. H. Nam. (2020). Association between periodontal disease and levels of triglyceride and total cholesterol among Korean adults. Healthcare (Basel), 8(3), 337. DOI : 10.3390/healthcare8030337
  25. W. Perini, M. B. Snijder, R. J. Peters, A. E. Kunst & I. G. van Valkengoed. (2019). Estimation of cardiovascular risk based on total cholesterol versus total cholesterol/high-density lipoprotein within different ethnic groups: The HELIUS study. Eur J Prev Cardiol, 26(17), 1888-1896. DOI : 10.1177/2047487319853354
  26. H. Zwickl, K. Hackner, H. Kofeler, E. C. Krzizek, B. Muqaku, D. Pils, H. Scharnagl, T. S. Solheim, E. Zwickl-Traxler & M. Pecherstorfer. (2020). Reduced LDL-cholesterol and reduced total cholesterol as potential indicators of early cancer in male treatment-naive cancer patients with pre-cachexia and cachexia. Front Oncol, 10, 1262. DOI : 10.3389/fonc.2020.01262
  27. Y. Liang, D. L. Vetrano & C. Qiu. (2017). Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: A population-based study. BMC Geriatr, 17(1), 294. DOI : 10.1186/s12877-017-0685-z
  28. W. Janssens, V. Carlier, B. Wu, L. VanderElst, M. G. Jacquemin & J. M. Saint-Remy. (2003). CD4+CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. J Immunol, 171(9), 4604-4612. DOI : 10.4049/jimmunol.171.9.4604
  29. L. Xiao, X. Yang, Y. Lin, S. Li, J. Jiang, S. Qian, Q. Tang, R. He & X. Li. (2016). Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes (Lond), 40(1), 112-120. DOI : 10.1038/ijo.2015.145
  30. A. Chauvat, N. Benhamouda, A. Gey, F. M. Lemoine, S. Paulie, F. Carrat, M. L. Gougeon, F. Rozenberg, A. Krivine, M. Cherai, P. t. Lehmann, F. Quintin-Colonna, O. Launay & E. Tartour. (2014). Clinical validation of IFNγ/IL-10 and IFNγ/IL-2 FluoroSpot assays for the detection of Tr1 T cells and influenza vaccine monitoring in humans. Hum Vaccin Immunother, 10(1), 104-113. DOI : 10.4161/hv.26593
  31. K. V. Kandror. (2017). Mammalian target of rapamycin complex 1 and FoxO1 in the transcriptional control of lipolysis and de novo lipogenesis. Curr Opin in Endocrinol Diabetes Obes, 24(5), 326-331. DOI : 10.1097/MED.0000000000000352
  32. S. H. Tan, G. Shui, J. Zhou, Y. Shi, J. Huang, D. Xia, M. R. Wenk & H. M. Shen. (2014). Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy, 10(2), 226-242. DOI : 10.4161/auto.27003
  33. S. Fabre, V. Lang, J. Harriague, A. Jobart, T. G. Unterman, A. Trautmann & G. Bismuth. (2005). Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J Immunol, 174(7), 4161-4171. DOI : 10.4049/jimmunol.174.7.4161
  34. J. Ma, Y. Ding, X. Fang, R. Wang & Z. Sun. (2012). Protein kinase C-θ inhibits inducible regulatory T cell differentiation via an AKT-Foxo1/3a-dependent pathway. J Immunol, 188(11), 5337-5347. DOI : 10.4049/jimmunol.1102979