DOI QR코드

DOI QR Code

주택수와 인구증가 변화를 반영한 지역별 부동산 시장 예측

Prediction of the Real Estate Market by Region Reflecting the Changes in the Number of Houses and Population

  • 배영민 (김천대학교 ICT군사학부)
  • 투고 : 2021.01.19
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

인구 증감과 주택공급의 변화를 반영하여 지역별 주택 수급 예측에 대한 중·장기적인 연구는 부족하였다. 본 연구에서는 최근 35년간 인구 1,000 명당 주택 수, 지역별 인구 변화율 그리고 향후 예측되는 지역별 인구증가 예측율을 반영하여 부동산 시장의 수요와 공급 측면에서 지역별 주택수 공급과 수요에 대하여 마코프 체인 모형의 전이확률을 적용하여 중·장기적인 지역별 주택수를 확인한다. 모형 수행결과, 지역별 부동산 시장은 경기, 인천, 서울 등 수도권에 대한 주택공급은 지역별 인구변화를 고려할 때 상당기간 부족할 것으로 예상되며 시간이 지나면서 다른 지역은 전국평균 주택수에 수렴하는 경향을 통해 안정화 될 것으로 예측되었고 부동산 시장 안정을 위해서는 지역별 주택공급 차별화를 적극 적용할 필요가 있는 것으로 확인되었다. 이번 연구에서 제시된 방법에 대해 실용적으로 사용될 수 있는 점과 지역별 인구증감 예측을 반영한 지역별 부동산 시장의 중·장기적인 방향성을 확인한다는 점에서 의미를 기대할 수 있다.

There has been a lot of research on the real estate market, but a lack of research on the supply and demand of housing supply in each region, reflecting the changes in population growth and supply. It is calculated as the transition probability of the Markov chain model by reflecting the data on the number of houses per 1,000 people in the past 35 years and the forecast data for population change by region, in terms of supply (housing) to demand (population) for factors on the real estate market. According to the calculation results of the real estate market by region, the housing supply to the metropolitan area such as Gyeong-gi, Incheon, and Seoul is expected to be insufficient for a considerable period of time, considering the population changes by region. To stabilize the real estate market, it was confirmed that it was necessary to actively apply the differentiation of housing supply by region. It is meaningful in terms of verifying long term trends in the real estate market by region that reflect the prediction of population change, and it is expected that the methods used in this study will be practical through the analysis results using the historical data.

키워드

참고문헌

  1. Y. S. Kim. (2007). A Study of Real Estate Price Change from Real Estate Policy - An Apartment Price Center. Management & Informantion Systems Review, 20, 17-32. DOI : 10.29214/damis.2007..20.002
  2. W. S. You & Y. S. Kim. (2009). The Theory on Demand and Supply in Real Estate and the Theoretical Approach to Price Formation. Korea Real Estate Academy Review, 37, 105-123. UCI : G704-001021.2009..37.007
  3. W. S. Lee. (2017). ETF Risk Management. Journal of the Korean Data & Information Science Society, 28(4), 843-851. DOI : 10.7465/jkdi.2017.28.4.843
  4. C. Y. Park, H. G. Kim, C. S. Shin, Y. Y. Cho & J. W. Park. (2017). Arrival Time Estimation for Bus Information System Using Hidden Markov Model. KIPS transactions on computer and communication systems, 6(4), 189-196. DOI : 10.3745/KTCCS.2017.6.4.189
  5. H. S. Park. (2010). Analysis of Real Estate Business Cycles by Using Markov Switching Model. Korea Appraisal Society, 9(2), 73-82. UCI: G704-SER000010156.2010.9.2.004
  6. S. H. Park & K. S. Lee. (2019). A Markov Chain Model for Population Distribution Prediction Considering Spatio - Temporal Characteristics by Migration Factors. Journal of the Economic Geographical Society of Korea, 22(3), 351-365. DOI : 10.23841/egsk.2019.22.3.351
  7. V. Babalos, M. Balcilar & R. Gupta. (2015). Herding Behavior in Real Estate Markets: Novel Evidence from a Markov Switching Model. Journal of Behavior and Experimental Finance, 8, 40-43. DOI : 10.1016/j.jbef.2015.10.004
  8. R. D. Evans & G. R. Mueller. (2013). Retail Real Estate Cycles as Markov Chains. The Journal of Real Estate Portfolio Management, 19(3), 179-188. http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=DIKO0011950401 https://doi.org/10.1080/10835547.2013.12089955
  9. R. Y. J. Siew. (2015). Predicting the Behavior of Australian ESG REITs using Markov Chain Analysis. Journal of Financial Management of Property and Construction, 20(3), 252-267. DOI : 10.1108/JFMPC-03-2015-0009
  10. C. W. R. Ward & S. L. Lee. (2001). Persistence of UK Real Estate Returns: A Markov Chain Analysis. Journal of Asset Management, 1(3), 279-291. https://doi.org/10.1057/palgrave.jam.2240022
  11. C. Yan, X. M. Liu, W. Liu & J. Sun. (2012). The Establishment of the Real Estate Price Prediction Model Based on the Grey Markov Chain: A Case Study of Qingdao City. Advanced Material Research, 482, 717-721. DOI : 10.4028/www.scientific.net/AMR.
  12. X. Guo & R. Liu. (2010). Green House Demand Forecasting Model Based on Markov Chains. Intelligent Computation Technology and Automation, 2, 407-409. DOI : 10.1109/ICICTA.2010.58
  13. C. H. Lee. (2020). The Relationship between Income Instability and Psychological Condition of Real Estate Price Changes and Willingness to Adjust Real Estate Holding Ratio. Journal of the Korea Convergence Society, 11(12), 199-205. DOI : 10.15207/JKCS.2020.11.12.199
  14. T. J. Jo & D. H. Lim. (2011). An Empirical Study on the Necessity for Housing Policy Customization by Region. Journal of the Korea Real Estate Analysts Association, 17(4), 27-44. UCI: G704-001613.2011.17.4.005
  15. J. Y. Kim, H. S. Lee & S. H. Hwang. (2020). Connectedness between EPU Index and Korean Housing Market Returns. Journal of the Korea Real Estate Analysts Association, 26(1), 7-24. DOI : 10.19172/KREAA.26.1.1
  16. H. Y. Lee & J. Lee. (2014). Spillover Effects of Apartment Housing Prices across Cities: A Generalized Forecast Error Variance Decomposition for Seven Large Cities. The Korea Spatial Planning Review, 82, 3-15. DOI : 10.15793/kspr.2014.82..001
  17. S. W. Jang, S. H. Lee & J. J. Kim. (2010). An Analysis of the Relationship between the Stock Price and the Real Estate Price. Journal of the architectural institute of Kora : Planning & Design, 26(3), 177-184. UCI : I410-ECN-0101-2010-540-002235723
  18. S. H. Kim & J. M. Lee. (2020). A Study on the Prediction for Apartment Sales Price: Focusing on the Basic Property, Economy, Education, Culture and Transportation Properties in S city, Gyeonggi-do. The Journal of Bigdata, 5(1), 109-124. DOI : 10.36498/kbigdt.2020.5.1.109
  19. S. H. Nam, T. H. Han, Y. J. Kim & E. J. Lee. (2020). Real-Estate Price Prediction in South Korea via Machine Learning Modeling. The Journal of the institute of internet, broadcasting and communication, 20(6), 15-20. DOI : 10.7236/JIIBC.2020.20.6.15
  20. H. S. Yang & W. S. Seo. (2020). Time Series Analysis of the Relationship between Housing Consumer Sentiment and Regional Housing Prices in Seoul. Journal of cadastre & land informatix, 50(1), 125-141. DOI : 10.22640/lxsiri.2020.50.1.125
  21. W. S. Yang. (2016). Numerical Analysis of Caching Performance in Content Centric Networks Using Markov Chain. The Journal of the Korea Contents Association, 16(4), 224-230. DOI : 10.5392/JKCA.2016.16.04.224