DOI QR코드

DOI QR Code

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites

열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구

  • Baek, Un-Gyeong (Gumi Electronics & Information Technology Research Institute (GERI), Innovative Technology Research Division) ;
  • Nam, Gibeop (Kumoh National Institute of Technology, Advanced Material Research Center) ;
  • Roh, Jae-Seung (Kumoh National Institute of Technology, School of Materials Science and Engineering) ;
  • Park, Sung-Eun (Gumi Electronics & Information Technology Research Institute (GERI), Innovative Technology Research Division) ;
  • Roh, Jeong-U (Gumi Electronics & Information Technology Research Institute (GERI), Innovative Technology Research Division)
  • Received : 2021.04.07
  • Accepted : 2021.04.21
  • Published : 2021.04.30

Abstract

3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

3D 프린팅 기술은 금형이 없이 다양한 형태의 제품을 만들기 쉬운 장점이 있지만, 기존 보편화된 성형법에 비해 기계적 물성이 낮고, 소재 및 제작 조건 등에 따라 기계적 물성이 크게 달라지는 문제가 있다. 한편, 높은 물성을 구현하기 위해서는 제조비용이 높아지는 문제가 있어, 이에 대한 연구 필요성이 증가하고 있다. 본 연구에서는 단섬유 탄소섬유 보강 나일론 필라멘트를 이용하여 3D 프린팅 열가소성 구조물을 제작하였다. 또한 인발 성형된 연속섬유 형태의 탄소섬유 혹은 유리섬유 강화 열경화성 복합재를 이용해 외측면을 보강하여 기계적 물성 향상 방법을 제시하였다. 보강재의 보강 위치와 섬유의 종류에 따른 굽힘물성 향상을 확인하였다.

Keywords

References

  1. Mikulal, K., Skrzypczak, D., Izydorczyk, G., Warchol, J., Moustakas, K., Chojnacka, K., and Witek-Krowiak, A., "3D Printing Filament as a Second Life of Waste Plastics-A Review," Environmental Science and Pollution Research, Vol. 28, 2021, pp. 12321-12333. https://doi.org/10.1007/s11356-020-10657-8
  2. Dizona, C.J.R., Espera Jr., H.A., Chena, Q., and Advinculaa, C.R., "Mechanical Characterization of 3D-printed Polymers," Additive Manufacturing, Vol. 20, 2018, pp. 44-67. https://doi.org/10.1016/j.addma.2017.12.002
  3. Blok, L.G., Longana, M.L., Yu, H., and Woods, B.K.S., "An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites," Additive Manufacturing, Vol. 22, 2018, pp. 176-186. https://doi.org/10.1016/j.addma.2018.04.039
  4. Sanei, S.H.R., and Popescu, D., "3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review," Journal of Composites Science, Vol. 4, No. 3, 2020, pp. 1-23.
  5. Gao, X., Zhang, D., Wen, X., Qi, S., Su, Y., and Dong, X., "Fused Deposition Modeling with Polyamide 1012," Rapid Prototyping Journal, Vol. 25, No. 7, 2019, pp. 1145-1154. https://doi.org/10.1108/RPJ-09-2018-0258
  6. Liao, G., Li, Z., Cheng, Y., Xu, D., Zhu, D., Jiang, S., Guo, J., Chen, X., Xu, G., and Zhu, Y., "Properties of Oriented Carbon Fiber/polyamide 12 Composite Parts Fabricated by Fused Deposition Modeling," Materials & Design, Vol. 139, 2018, pp. 283-292. https://doi.org/10.1016/j.matdes.2017.11.027
  7. Spoerk, M., Arbeiter, F., Cajner, H., Sapkota, J., and Holzer, C., "Parametric Optimization of Intra- and Inter-layer Strengths in Parts Produced by Extrusion-based Additive Manufacturing of Poly(lactic acid)," Journal of Applied Polymer Science, Vol. 134, No. 41, 2017, 45401. https://doi.org/10.1002/app.45401
  8. Akhoundi, A.B., and Behravesh, A.H., "Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products," Experimental Mechanics, Vol. 59, 2019, pp. 883-897. https://doi.org/10.1007/s11340-018-00467-y
  9. Korkees, F., Allenby, J., and Dorrington, P., "3D Printing of Composites: Design Parameters and Flexural Performance," Rapid Prototyping Journal, Vol. 26, No. 4, 2020, pp. 699-706. https://doi.org/10.1108/rpj-07-2019-0188
  10. Calignano, F., Lorusso, M., Roppolo, I., and Minetola, P., "Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing," Machines, Vol. 8, No. 3, 2020, pp. 1-13.
  11. Dickson, A.N., Barry, J.N., McDonnell, K.A., and Dowling, D.P., "Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforcedpolymer Composites using Additive Manufacturing," Additive Manufacturing, Vol. 16, 2017, pp. 146-152. https://doi.org/10.1016/j.addma.2017.06.004
  12. Ary Subagia, I.D.G., Kim, Y., Tijing, L.D., Kim, C.S., and Shon, H.K., "Effect of Stacking Sequence on the Flexural Properties of Hybrid Composites Reinforced with Carbon and Basalt Fibers," Composites: Part B, Vol. 58, 2014, pp. 251-258. https://doi.org/10.1016/j.compositesb.2013.10.027
  13. He, B., Wang, B., Wang, Z., Qi, S., Tian, G., and Wu, Z., "Mechanical Properties of Hybrid Composites Reinforced by Carbon Fiber and High-strength and High-modulus Polyimide Fiber," Polymer, Vol. 204, 2020, pp. 1-9.
  14. Wonderlya, C., Grenestedta, J., Fernlundb, G., and C pusb, E., "Comparison of Mechanical Properties of Glass Fiber/vinyl Ester and Carbon Fiber/vinyl Ester Composites," Composites Part B: Engineering, Vol. 36, No. 5, 2005, pp. 417-426. https://doi.org/10.1016/j.compositesb.2005.01.004