참고문헌
- Abo-Qudais, S.A. (2005), "Effect of concrete mixing parameters on propagation of ultrasonic waves", Constr. Build. Mater., 19(4), 257-263. https://doi.org/10.1016/j.conbuildmat.2004.07.022.
- Arasan, S. and Nasirpur, O. (2015), "The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand", Geomech. Eng., 8(3), 361-375. https://doi.org/10.12989/gae.2015.8.3.361.
- Askar, Z. and Zhanbolat, S. (2015), "Experimental investigations of freezing soils at ground conditions of Astana, Kazakhstan", Sci. Cold Arid Reg., 7(4), 399-406.
- ASTM/597-09 (2009), Standard Test Method for Pulse Velocity through Concrete, American Society for Testing and Materials, U.S.A.
- ASTM/2166 (2003), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, American Society for Testing and Materials, Philadelphia, Pennsylvania, U.S.A.
- ASTM/D698 (2007), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, American Society for Testing and Materials, Philadelphia, Pennsylvania, U.S.A.
- Cascante, G. and Santamarina, J.C. (1996), "Interparticle contact behavior and wave propagation", J. Geotech. Eng., 122(10), 831-839. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:10(831).
- Ding, M., Zhang, F., Ling, X. and Lin, B. (2018), "Effects of freeze-thaw cycles on mechanical properties of polypropylene fiber and cement stabilized clay", Cold Reg. Sci. Technol., 154 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004.
- Eigenbrod, K. (1996), "Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-gained soils", Can. Geotech. J., 33(4), 529-537. https://doi.org/10.1139/t96-079-301.
- Gartner, E. (2004), "Industrially interesting approaches to "low-CO2" cements", Cement Concrete Res., 34(9), 1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
- Glasser, F.P. and Zhang, L. (2001), "High-performance cement matrices based on calcium sulfoaluminat-belite compositions", Cement Concrete Res., 31(12), 1881-1886. https://doi.org/10.1016/S0008-8846(01)00649-4.
- Gullu, H. and Fedakar, H.I. (2017), "Unconfined compressive strength and freeze-thaw resistance of sand modified with sludge ash and polypropylene fiber", Geomech. Eng., 13(1), 25-41. https://doi.org/10.12989/gae.2017.13.1.025.
- Hazirbaba, K. and Gullu, H. (2010), "California bearing ratio improvement and freeze-thaw performance of fine-grained soils treated with geofiber and synthetic fluid", Cold Reg. Sci. Technol., 63(1-2), 50-60. https://doi.org/10.1016/j.coldregions.2010.05.006.
- Hotineanu, A., Bouasker, M., Aldaood, A. and Al-Mukhtar, M. (2015), "Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays", Cold Reg. Sci. Technol., 119, 151-157. https://doi.org/10.1016/j.coldregions.2015.08.008.
- Jumasultan, A., Sagidullina, N., Kim, J. and Moon, S.W. (2020), "Effect of cyclic freezing-thawing on strength and durability of sand stabilized with CSA cement", Proceedings of the 2020 World Congress on Advances in Civil, Environmental, & Materials Research, Seoul, Korea, August.
- Kamei, T., Ahmed, A. and Shibi, T. (2012), "Effect of freeze-thaw cycles on durability and strength of very soft clay soil stabilised with recycled Bassanite", Cold Reg. Sci. Technol., 82, 124-129. https://doi.org/10.1016/j.coldregions.2012.05.016.
- Li, Y., Ling, X., Su, L., An, L., Li, P. and Zhao, Y. (2018), "Tensile strength of fiber reinforced soil under freeze-thaw condition", Cold Reg. Sci. Technol., 146, 53-59. https://doi.org/10.1016/j.coldregions.2017.11.010.
- Liu, J., Wang, T. and Tian, Y. (2010), "Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles", Cold Reg. Sci. Technol., 61(1), 29-33. https://doi.org/10.1016/j.coldregions.2010.01.002.
- Moon, S.-W., Vinoth, G., Subramanian, S., Kim, J. and Ku, T. (2020), "Effect of fine particles on strength and stiffness of cement treated sand", Granul. Matter, 22(1), 9. https://doi.org/10.1007/s10035-019-0975-6.
- Parsons, R.L. and Milburn, J.P. (2003), "Engineering behavior of stabilized soils", Transport. Res. Rec., 1837(1), 20-29. https://doi.org/10.3141/1837-03.
- Reinhardt, H. and Grosse, C. (2004), "Continuous monitoring of setting and hardening of mortar and concrete", Constr. Build. Mater., 18(3), 145-154. https://doi.org/10.1016/j.conbuildmat.2003.10.002.
- Sayers, C. and Grenfell, R. (1993), "Ultrasonic propagation through hydrating cements", Ultrasonics, 31(3), 147-153. https://doi.org/10.1016/0041-624X(93)90001-G.
- Shang, H.S., Song, Y.P. and Qin, L.K. (2008), "Experimental study on strength and deformation of plain concrete under triaxial compression after freeze-thaw cycles", Build. Environ., 43(7), 1197-1204. https://doi.org/10.1016/j.buildenv.2006.08.027.
- Shibi, T. and Kamei, T. (2014), "Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash", Cold Reg. Sci. Technol., 106-107, 36-45. https://doi.org/10.1016/j.coldregions.2014.06.005.
- Shooshpasha, I. and Shirvani, R.A. (2015), "Effect of cement stabilization on geotechnical properties of sandy soils", Geomech. Eng., 8(1), 17-31. http://doi.org/10.12989/gae.2015.8.1.017.
- Subramanian, S., Khan, Q. and Ku, T. (2019), "Strength development and prediction of calcium sulfoaluminate treated sand with optimized gypsum for replacing OPC in ground improvement", Constr. Build. Mater., 202, 308-318. https://doi.org/10.1016/j.conbuildmat.2018.12.121.
- Subramanian, S., Moon, S.W. and Ku, T. (2019), "Effect of Gypsum on the strength of CSA treated sand", Proceedings of the 16th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Taipei, Taiwan, October.
- Subramanian, S., Moon, S.W., Moon, J. and Ku, T. (2018), "CSA-treated sand for geotechnical application: Microstructure analysis and rapid strength development", J. Mater. Civ. Eng., 30(12), 04018313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002523.
- Ukrainczyk, N., Frankoviæ Mihelj, N. and Sipusic, J. (2013), "Calcium sulfoaluminate eco-cement from industrial waste", Chem. Biochem. Eng. Quart., 27(1), 83-93.
- Vinoth, G., Moon, S.W., Kim, J. and Ku, T. (2018), "Effect of fine particles on cement treated sand", Proceedings of the China-Europe Conference on Geotechnical Engineering, Vienna, Austria, August.
- Vinoth, G., Moon, S.W., Moon, J. and Ku, T. (2018), "Early strength development in cement-treated sand using low-carbon rapid-hardening cements", Soils Found., 58(5), 1200-1211. https://doi.org/10.1016/j.sandf.2018.07.001.
- Wang, D.Y., Ma, W., Niu, Y.H., Chang, X.X. and Wen, Z. (2007), "Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay", Cold Reg. Sci. Technol., 48(1), 34-43. https://doi.org/10.1016/j.coldregions.2006.09.008.
- Wong, L.C. and Haug, M.D. (1991), "Cyclical closed-system freeze-thaw permeability testing of soil liner and cover materials", Can. Geotech. J., 28(6), 784-793. https://doi.org/10.1139/t91-095.
- Yilmaz, F. and Fidan, D. (2018), "Influence of freeze-thaw on strength of clayey soil stabilized with lime and perlite", Geomech. Eng., 14(3), 301-306. https://doi.org/10.12989/gae.2018.14.3.301.
- Zhang, W., Guo, A. and Lin, C. (2019), "Effects of cyclic freeze and thaw on engineering properties of compacted loess and lime-stabilized loess", J. Mater. Civ. Eng., 31(9), 04019205. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002858.
- Zhang, Y., Johnson, A.E. and White, D.J. (2016), "Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials", Cold Reg. Sci. Technol., 122, 50-57. https://doi.org/10.1016/j.coldregions.2015.11.005.