DOI QR코드

DOI QR Code

High School Exploration of a Phase Change Material as a Thermal Energy Storage

  • Ardnaree, Kwanhathai (Institute for Innovative Learning, Mahidol University) ;
  • Triampo, Darapond (Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University) ;
  • Yodyingyong, Supan (Institute for Innovative Learning, Mahidol University)
  • Received : 2020.09.29
  • Accepted : 2020.12.31
  • Published : 2021.04.20

Abstract

The present study describes a hands-on experiment to help students understand the concept of phase change or phase transition and its application in a phase change material (PCM). PCMs are substances that have the capability of storing and releasing large amounts of thermal energy. They act as energy storage materials that provide an effective way to save energy by reducing the electricity required for heating and cooling. Lauric acid (LA) was selected as an example of the PCM. Students investigated the temperature change of LA and the temperature (of air) inside the test tube. The differences in the temperatures of the systems helped students understand how PCMs work. A one-group pretest and posttest design was implemented with 34 grade-11 students in science and mathematics. Students' understanding was assessed using a multiple-choice test and a questionnaire. The findings revealed that the designed activity helped students understand the concept of phase change and its application to materials for thermal energy storage.

Keywords

References

  1. Kadanoff, L. P. J. Stat. Phys. 2009, 137, 777. https://doi.org/10.1007/s10955-009-9814-1
  2. Yeomans, J. M. Statistical Mechanics of Phase Transitions. Clarendon Press: 1992.
  3. Brown, R.; Brown, R. J. Chem. Educ. 2000, 77, 724. https://doi.org/10.1021/ed077p724
  4. Carter, K. N.; Carter Jr., K. N. J. Chem. Educ. 1995, 72, 647. https://doi.org/10.1021/ed072p647
  5. Flowers P.; Theopold K.; Langley R.; Robinson W. R.; Blaser M.; Bott S.; et al. Chemistry. Texas, U. S. A., 2015; p 525-555.
  6. Cabeza, L. F.; Castell, A.; Barreneche, C.; De Gracia, A.; Fernandez, A. Renew. Sust. Energ. Rev. 2011, 15, 1675. https://doi.org/10.1016/j.rser.2010.11.018
  7. Hawes, D.; Feldman, D.; Banu, D. Energ. Buildings. 1993, 20, 77. https://doi.org/10.1016/0378-7788(93)90040-2
  8. Umair, M. M.; Zhang, Y.; Iqbal, K.; Zhang, S.; Tang, B. Appl. Energ. 2019, 235, 846. https://doi.org/10.1016/j.apenergy.2018.11.017
  9. Yang, Z.; Deng, Y.; Li, J. Appl. Therm. Eng. 2019, 150, 967. https://doi.org/10.1016/j.applthermaleng.2019.01.063
  10. Yu, Y.; Xu, J.; Wang, G.; Zhang, R.; Peng, X. J. Mater. Sci. 2019, 55, 1511. https://doi.org/10.1007/s10853-019-04107-1
  11. Zhang, K.; Zhang, Y.; Liu, J.; Niu, X. Appl. Therm. Eng. 2018, 142, 215. https://doi.org/10.1016/j.applthermaleng.2018.07.004
  12. Li, Z.; Ma, T.; Zhao, J.; Song, A.; Cheng, Y. Energy. 2019, 178, 471. https://doi.org/10.1016/j.energy.2019.04.166
  13. Iqbal, K.; Sun, D. Renew. Energ. 2014, 71, 473. https://doi.org/10.1016/j.renene.2014.05.063
  14. Gao, T.; Yang, Z.; Chen, C.; Li, Y.; Fu, K.; Dai, J.; Hitz, E. M.; Xie, H.; Liu, B.; Song, J.; Yang, B.; Hu, L. ACS. Nano. 2017, 11, 11513. https://doi.org/10.1021/acsnano.7b06295
  15. Khan, M. M. A.; Saidur, R.; Al-Sulaiman, F. A. Renew. Sust. Energ. Rev. 2017, 76, 105. https://doi.org/10.1016/j.rser.2017.03.070
  16. Sharma, R.; Ganesan, P.; Tyagi, V.; Metselaar, H.; Sandaran, S. Energ. Convers. Manage. 2015, 95, 193. https://doi.org/10.1016/j.enconman.2015.01.084
  17. Kozak, Y.; Farid, M.; Ziskind, G. Appl. Therm. Eng. 2017, 115, 899. https://doi.org/10.1016/j.applthermaleng.2016.12.127
  18. Unal, M.; Konuklu, Y.; Paksoy, H. Int. J. Energy. Res. 2019, 43, 4495. https://doi.org/10.1002/er.4578
  19. Du, Y.; Liu, P.; Quan, X.; Ma, C. Sol. Energy. 2020, 208, 573. https://doi.org/10.1016/j.solener.2020.07.083
  20. Ikutegbe, C.A.; Farid, M.M. Renew. Sust. Energ. Rev. 2020, 131, 110008. https://doi.org/10.1016/j.rser.2020.110008
  21. Regin, A. F.; Solanki, S.; Saini, J. Renew. Sust. Energ. Rev. 2008, 12, 2438. https://doi.org/10.1016/j.rser.2007.06.009
  22. Li, Y.; Samad, Y. A.; Polychronopoulou, K.; Alhassan, S. M.; Liao, K. J. Mater. Chem. A. 2014, 2, 7759. https://doi.org/10.1039/C4TA00839A
  23. Kim, S.; Park, J. Y. J. Korean Chem. Soc. 2018, 62, 214. https://doi.org/10.5012/JKCS.2018.62.3.214
  24. Hyeoksoon, K.; Taehee, N. J. Korean Chem. Soc. 2003, 47, 265. https://doi.org/10.5012/jkcs.2003.47.3.265
  25. Park, H.; Kim, J.; Jung, Y. H.; Kim, Y. I. J. Korean Chem. Soc. 2017, 61, 57. https://doi.org/10.5012/jkcs.2017.61.2.57
  26. Bourne, S.; Novoselac, A. Build. Simul. 2015, 8, 673. https://doi.org/10.1007/s12273-015-0243-6
  27. Shwartz, Y.; Ben-Zvi, R.; Hofstein, A. J. Chem. Educ. 2006, 83, 1557. https://doi.org/10.1021/ed083p1557
  28. Shwartz, Y.; Ben-Zvi, R.; Hofstein, A. Chem. Educ. Res. Pract. 2006, 7, 203. https://doi.org/10.1039/b6rp90011a
  29. Jones, L. L.; Jordan, K. D.; Stillings, N. A. Chem. Educ. Res. Pract. 2005, 6, 136. https://doi.org/10.1039/b5rp90005k
  30. Jose, T. J.; Williamson, V. M. J. Chem. Educ. 2005, 82, 937. https://doi.org/10.1021/ed082p937