DOI QR코드

DOI QR Code

Electrochromic Performance of NiOx Thin Film on Flexible PET/ITO Prepared by Nanocrystallite-Dispersion Sol

  • Kwak, Jun Young (Department of Chemistry, Pukyong National University) ;
  • Jung, Young Hee (Department of Chemistry, Pukyong National University) ;
  • Park, Juyun (Department of Chemistry, Pukyong National University) ;
  • Kang, Yong-Chul (Department of Chemistry, Pukyong National University) ;
  • Kim, Yeong Il (Department of Chemistry, Pukyong National University)
  • Received : 2021.01.13
  • Accepted : 2021.01.25
  • Published : 2021.04.20

Abstract

An electrochromic nickel oxide thin film was fabricated on a flexible PET/ITO substrate using a nanocrystallite- dispersed coating sol and bar coater. Nanocrystalline NiOx of 3-4 nm crystallite size was first synthesized by base precipitation and thermal conversion. This NiOx nanocrystallite powder was mechanically dispersed in an alcoholic solvent mixed with a silane binder to prepare a coating sol for thin film. This sol method is different from the normal sol-gel method in that it does not require the conversion of precursor by heat treatment. Therefore, this method provides a very facile method to prepare NiOx thin films on any kind of substrate and it can be easily applied to mass production. The electrochromic performance of this NiOx thin film on PET/ITO electrode with a thickness of about 400 nm was investigated in a nonaqueous LiClO4 electrolyte solution by cyclic voltammetric and repeated chronoamperometric measurements in conjunction with spectrophotometry. The visible light modulation of 44% and the colorization efficiency of 41 ㎠/C at 550 nm were obtained at the step potentials of -0.8/+1.2 V vs Ag and a duration of 30 s.

Keywords

References

  1. Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge Press: Cambridge, 2007.
  2. Niklasson, G. A.; Granqvist, C. G. J. Mater. Chem. 2007, 17, 127. https://doi.org/10.1039/b612174h
  3. Murphy, T. P.; Hutchins, M. G. Sol. Energy Mater. Sol. Cells 1995, 39, 377. https://doi.org/10.1016/0927-0248(96)80003-1
  4. Cordoba-Torresi, S. I.; Gabrielli, C.; Hugot-Le Goff, A.; Torresi, R. J. Electrochem. Soc. 1991, 138, 1548. https://doi.org/10.1149/1.2085830
  5. (a) Passerini, S.; Scrosati, B.; Gorenstein, G., Dekker, F. J. Electrochem. Soc. 1990, 137, 3297. https://doi.org/10.1149/1.2086202
  6. (b) Decker, F.; Passerini, S. Pileggi, R.; Scrosati, B. Electrochim. Acta 1992, 37, 1033. https://doi.org/10.1016/0013-4686(92)85220-F
  7. (a) Jeevanandam, P.; Koltypin, Y.; Gendanken, A. Nano Lett. 2001, 1, 263. https://doi.org/10.1021/nl010003p
  8. (b) Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, V.; Ganesan, V.; Wang, T. Y. RSC Adv. 2016, 6, 79668. https://doi.org/10.1039/C5RA27099E
  9. (c) Park, C.; Kim, J.; Lee, K.; Oh, S. K.; Kang, H. J.; Park, N. S. App. Sci. Converg. Tech. 2015, 24, 72. https://doi.org/10.5757/ASCT.2015.24.3.72
  10. (d) Manouchehri, I.; Alshiaa, S. A. O.; Mehrparparvar, D.; Hamil, M. I.; Moradian, R. Optik, 2016, 127, 9400. https://doi.org/10.1016/j.ijleo.2016.06.092
  11. Maruyama, T.; Arai, S. Sol. Energy Mater. Sol. Cells 1993, 30, 257. https://doi.org/10.1016/0927-0248(93)90145-S
  12. (a) Mahmoud, S. A.; Aly, S. A.; Abdel-Rahman, M.; Abdel-Hady, K. Physca B, 2000, 293, 125. https://doi.org/10.1016/S0921-4526(00)00517-2
  13. (b) Wu, M.-S.; Yang, C.- H. Appl. Phys. Lett. 2007, 91, 033109. https://doi.org/10.1063/1.2759270
  14. (a) Rubin, M. Wen, S.-J.; Richardson, T.; Kerr, J.; von Rottkay, K.; Slack, J. Sol. Energy Mater. Sol. Cells 1998, 54, 59. https://doi.org/10.1016/S0927-0248(97)00223-7
  15. (b) Moulki, H.; Park, D. H.; Min, B.-K.; Kwon, H.; Hwang, S.-J.; Choy, J.-H.; Toupance, T.; Campet, G.; Rougier, A. Electrochim. Acta 2012, 74, 46. https://doi.org/10.1016/j.electacta.2012.03.123
  16. (c) Penin, N.; Rougier, A.; Laffont, L.; Poizot, P.; Tarascon, J. M. Sol. Energy Mater. Sol. Cells 2006, 90, 422. https://doi.org/10.1016/j.solmat.2005.01.018
  17. (a) Reguig, B. A.; Reragui, A.; Morsli, M.; Khelil, A.; Addou, M.; Berbede, J. C. Sol. Energy Mater. Sol. Cells 2006, 90, 1381. https://doi.org/10.1016/j.solmat.2005.10.003
  18. (b) Wu, C.-C.; Yang, C.-F. Nano. Res. Lett. 2013, 8, 33. https://doi.org/10.1186/1556-276X-8-33
  19. (a) Pramanik, P.; Bhattacharya, S. J. Electrochem. Soc. 1990, 137, 3869. https://doi.org/10.1149/1.2086316
  20. (b) Han S.-Y.; Lee, D.-H., Chang, Y.-J.; Ryu, S.-O.; Lee, T.-J.; Chang, C.-H. J. Electrochem. Soc. 2006, 153, C382. https://doi.org/10.1149/1.2186767
  21. (c) Xia, X. H.; Tu, J. P.; Zhang, X. L.; Zhang, W. K.; Huang, H. Electrochem. Acta 2008, 53, 5721. https://doi.org/10.1016/j.electacta.2008.03.047
  22. (d) Zhang, J.; Cai, G.; Zhou, D.; Tang, H.; Wang, X.; Gu, C.; Tu, J. J. Mater. Chem. C 2014, 2, 7013. https://doi.org/10.1039/C4TC01033G
  23. (a) Boschloo, G.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3039. https://doi.org/10.1021/jp003499s
  24. (b) Korosec, R. C.; Bukovec, P.; Pihlar, B.; Gomilsek, J. P. Thermochim. Acta 2003, 402, 57. https://doi.org/10.1016/S0040-6031(02)00537-3
  25. (c) Korosec, R. C.; Bukovec, P. Thermochim. Acta 2004, 410, 65. https://doi.org/10.1016/S0040-6031(03)00373-3
  26. (d) Korosec, R. C.; Bukovec, P. Acta Chim. Slov. 2006, 53, 136.
  27. (e) Zayim, E. O.; Turhan, I.; Tepehan, F. Z.; Ozer, N. Sol. Energy Mater. Sol. Cells 2008, 92, 164. https://doi.org/10.1016/j.solmat.2007.03.034
  28. (f) Park, S. H.; Lim, J. W.; Yoo, S. J.; Cha, Y.; Sung, Y. E. Sol. Energy Mater. Sol. Cells 2012, 99, 31. https://doi.org/10.1016/j.solmat.2011.06.023
  29. (g) Guo, W.; Hui, K. N.; Hui, K. S. Mater. Lett. 2013, 92, 291. https://doi.org/10.1016/j.matlet.2012.10.109
  30. (h) Sta, I.; Jlassi, M.; Hajji, M.; Ezzaouia, H. Thin Solid Films 2014, 555, 131. https://doi.org/10.1016/j.tsf.2013.10.137
  31. Deng, X. Y.; Chen, Z. Mater. Lett. 2004, 58, 276. https://doi.org/10.1016/S0167-577X(03)00469-5
  32. Moghaddam, J.; Hashemi, E. Korean J. Chem. Eng. 2014.
  33. Hall, D. S.; Lockwood, D. J.; Bock, C.; MacDougall, B. R. Proc. R. Soc. A 471, 20140792. https://doi.org/10.1098/rspa.2014.0792
  34. JCPDS 73-1520, 74-2075.
  35. Rajamathi, M; Subbanna, G.; Kamath, V. J. Mater. Chem. 1997, 7, 2293. https://doi.org/10.1039/a700390k
  36. JCPDS 01-1139, 02-1272, 71-1179.
  37. Patterson, A. Phys. Rev. 1939, 56, 978. https://doi.org/10.1103/PhysRev.56.978
  38. Passerini, S.; Scrosati, B. J. Electrochem. Soc. 1994, 141, 889. https://doi.org/10.1149/1.2054853
  39. Patil, R. A.; Devan, R. S.; Lin, J.-H.; Ma. Y.-R.; Patil, P. S.; Liou, Y. Sol. Energy Mater. Sol. Cells 2013, 112, 91. https://doi.org/10.1016/j.solmat.2013.01.003
  40. Guillet. T.; Schneider, N.; Loones, N.; Ramos, F. J.; Rousset, Thin Solid Films 2018, 661, 143. https://doi.org/10.1016/j.tsf.2018.07.022
  41. ASTM D1003-00, KS L 2514.