DOI QR코드

DOI QR Code

Secondary Structure for RNA Aptamers Binding to Guanine-Rich Sequence in the 5'-UTR RNA of N-Ras Oncogene

  • Cho, Bongrae (Department of Applied Chemistry, Cheongju University)
  • Received : 2020.12.16
  • Accepted : 2021.01.08
  • Published : 2021.04.20

Abstract

RNA molecules which bind to the G-rich sequence in the 5'-UTR RNA which plays an important role in expression of N-ras, were selected. The secondary structures of five selected RNA aptamers including primer sequence were found by the CLC RNA workbench ver. 4.2 program (www.clcbio.com) and investigated with RNA structural probes such as RNase T1 which has specificity for a G in single-stranded region, RNase V1 specific for double strand and nuclease S1 specific for single strand. The generalized secondary structure model was proposed and characterized. It was composed of a central long double strand region flanked by single strand region at both end sides. The double strand region had an internal single-strand region and bulges. The single strand loop in the right side was composed of four or five nucleotides.

Keywords

References

  1. Williamson, J. R. Ann. Rev. Biophys. Biomol. Struc. 1994, 23, 703. https://doi.org/10.1146/annurev.bb.23.060194.003415
  2. McEachern, M. J.; Krauskopf, A.; Blackburn, E. H. Ann. Rev. Genet. 2000, 34, 331. https://doi.org/10.1146/annurev.genet.34.1.331
  3. Wright, W. E.; Tesmer, V. M.; Huffman, K. E.; Levene, S. D.; Shay, J. W. Genes Dev. 1997, 11, 2801. https://doi.org/10.1101/gad.11.21.2801
  4. Greider, C. W. Curr. Opin. Genet. Dev. 1994, 4, 203. https://doi.org/10.1016/S0959-437X(05)80046-2
  5. Blackburn, E. H. Cell 1994, 77, 621. https://doi.org/10.1016/0092-8674(94)90046-9
  6. Rhodes, D.; Giraldo, R. Curr. Opin. Struct. Biol. 1995, 5, 311. https://doi.org/10.1016/0959-440X(95)80092-1
  7. Verdun, R. E.; Karlseder, J. Nature 2007, 447, 924. https://doi.org/10.1038/nature05976
  8. Kumari, S.; Bugaut, A.; Huppert, J. L.; Balasubramanian, S. Nat. Chem. Biol. 2007, 3, 218. https://doi.org/10.1038/nchembio864
  9. Cho, B. Bull. Korean Chem. Soc. 2011, 32, 2137. https://doi.org/10.5012/bkcs.2011.32.6.2137
  10. Choi, S.-Y.; Cho, B. Bull. Korean Chem. Soc. 2011, 32, 3770. https://doi.org/10.5012/bkcs.2011.32.10.3770
  11. Choi, S.-Y.; Cho, B. Bull. Korean Chem. Soc. 2012, 33, 4265. https://doi.org/10.5012/bkcs.2012.33.12.4265
  12. Choi, S.-Y.; Cho, B. Bull. Korean Chem. Soc. 2013, 34, 3471. https://doi.org/10.5012/bkcs.2013.34.11.3471
  13. Ko, J.-H.; Cho, B.; Ahn, J. K.; Lee, Y.; Park, I. Bull. Korean Chem. Soc. 1999, 20, 1335. https://doi.org/10.5012/BKCS.1999.20.11.1335
  14. Brunel, C.; Romby, P. Methods in Enzymology 2000, 318, 3. https://doi.org/10.1016/S0076-6879(00)18040-1
  15. Ko, J.; Lee, Y.; Park, I.; Cho, B. FEBS Lett. 2001, 508, 300. https://doi.org/10.1016/S0014-5793(01)03068-X
  16. Cho, B. Bull. Korean Chem. Soc. 2006, 27, 786. https://doi.org/10.5012/bkcs.2006.27.5.786
  17. Sambrook, J.; Fritsch, E. F.; Maniatis, T. In Molecular Cloning: A Laboratory Mannual; 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 1989.
  18. Cho, B. Bull. Korean Chem. Soc. 2012, 33, 2796. https://doi.org/10.5012/bkcs.2012.33.8.2796
  19. Cho, B. Bull. Korean Chem. Soc. 2013, 34, 1924. https://doi.org/10.5012/bkcs.2013.34.6.1924