DOI QR코드

DOI QR Code

One Boundary Diffusion Model Analysis on Distributions of Eye Fixation Durations in Reading; Eye Movement Tracking Study

우리글 읽기에서 나타난 성인과 청소년의 고정시간 분포분석과 단일경계 확산모형 제안

  • 주혜리 (서울대학교 인지과학협동과정) ;
  • 고성룡 (서울대학교 인지과학협동과정)
  • Received : 2021.01.22
  • Accepted : 2021.01.22
  • Published : 2021.03.31

Abstract

The aim of this study was to analyze word frequency effects on eye fixation duration in Korean reading with a one-boundary diffusion model and to show how these phenomena differ between adults (20-28yrs) and adolescents (13-14yrs). We predicted that the drift rate parameter in the boundary diffusion model would reflect the information processing of the fovea during silent reading. Through an eye movement tracking experiment while controlling word properties such as the word frequency and the age of acquisition, Experiment 1 and Experiment 2 show that the information processing pertaining to words to be placed in the fovea is connected to the drift rate of the one-boundary diffusion model parameters. In Experiment 1,in the adult group, the mean difference in the fixation time in the response proportion between the presence of high-frequency condition and low-frequency condition in the adult group was higher in quantile 0.9 than it was in the 0.1 quantile, but in the adolescent group, the mean difference in the fixation time in the response proportion between the two conditions was not significantly in the 0.9 quartile.In Experiment 2, the mean difference in the fixation time in the response proportion between early-acquired condition and late-acquired condition in both groups was also higher in the quantile 0.9 than in the 0.1 quantile. The distribution of the two conditions in the both groups was positively skewed, and the difference showed the same pattern found in the results of Ratcliff(Ratcliff & McKoon, 2008). Based on the experimental results, we propose one-boundary diffusion model as a tool to explain word property effects and individual differences in reading. In particular, we suggest that the drift rate parameter in the boundary diffusion model reflects the information processing of the fovea during reading. In addition, the results show that one-boundary diffusion model can be used to predict the aforementioned phenomena in reading.

이 연구의 목적은 성인(만20-28세)과 청소년(만13-14세)을 대상으로 글읽기 안구운동 추적 실험을 통해 분포분석하여 단어빈도 효과를 확인하고, 단일경계 확산모형(One-boundary Diffusion Model)의 정보표집율(drift rate) 파라미터가 두 집단의 글읽기 현상의 차이를 설명할 수 있고 단일경계 확산모형이 개인차를 설명하는 도구로써 적절한지 확인하고자 한다. 먼저 단어 빈도와 단어습득연령과 같은 단어 성질을 통제한 두 가지 글읽기 안구운동추적 실험을 하였고, 실험 1과 실험 2에서 중심와 정보처리가 단일경계 확산모형의 정보표집율 파라미터와 연결되는 것을 확인하였다. 실험 1에서는 성인 집단은 고빈도 조건과 저빈도 조건의 반응비율 고정 시간 평균 차이는 0.1분위수 보다 0.9 분위수에서 더 크게 나타났지만 청소년 집단은 고빈도 조건과 저빈도 조건의 반응 비율 고정시간 평균 차이는 0.1분위수과 0.9 분위수에서 차이가 크게 나타나지 않았다. 실험 2에서 두 집단의 초기습득연령 조건과 후기습득연령 조건의 반응 비율 고정시간 평균 차이는 0.1분위수 보다 0.9 분위수에서 더 크게 나타났다. Ratcliff(Ratcliff, & McKoon, 2008)의 반응시간 분포와 유사한 패턴으로 정적 편향 분포로 앞부분 보다는 꼬리 쪽에서 분산이 증가되는 경향이 확인하였으며 단어의 성질에 따른 두 조건의 차이는 분포의 첩점 크기 차이로 나타나는 것을 확인하였다. 본 연구는 안구운동실험 결과를 통해 글읽기에서 나타나는 단어 성질에 따른 효과를 확인하고 단일경계 확산모형의 정보표집율 파라미터가 글읽기에서 중심와 정보처리를 반영하는 것을 강조한다. 나아가 이 연구에서 제안하는 단일경계 확산모형이 글읽기에서 현상을 예측하고 개인차를 설명할 수 있는 도구로써 활용할 수 있는 가능성을 시사한다.

Keywords

References

  1. 고성룡, 주혜리, 이다정 (2020). 확산모형 분석도구: SNUDM, Korean Journal of Cognitive Science, 31(1). 1-23. https://doi.org/10.19066/COGSCI.2020.31.1.001
  2. 고성룡, 횽효진, 윤소정, 조병환 (2008). 우리글 명사 어절에서의 단어 빈도 효과: 안구운동 추적 연구. 한국심리학회지: 실험, 20(1), 21-37.
  3. 박태진 (2003). 한국어 단어의 주관적 빈도 추정치 및 단어 재인에 미치는 빈도 효과, 한국심리학회지: 실험, 5(2), 349-366.
  4. 윤소정, 고성룡 (2010). 우리글 읽기에서 본 단어 습득연령 효과: 안구운동 추적 연구. 한국심리학회지: 인지 및 생물, 22(2), 129-142. https://doi.org/10.22172/COGBIO.2010.22.2.001
  5. 주혜리 (2015). 우리글 읽기에서 나타나는 고정시간 분포에 대한 확산모형 분석, 서울대학교 대학원 박사학위논문, 서울.
  6. 최소영 (2012). 안구운동추적기법을 활용한 읽기장애 연구의 도입과 전망: 국내 연구현황을 중심으로. 학습장애연구, 9(1), 121-136
  7. 황지영 (2012). The Effect of Word Frequency and Masking on the distributions of Eye Fixation Durations, 서울대학교 대학원 석사학위논문, 서울.
  8. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390-412. https://doi.org/10.1016/j.jml.2007.12.005
  9. Balota, D. A., & Spieler, D. H. (1999). Word-frequency, repetition, and lexicality effects in word recognition tasks: Beyond measures of central tendency. Journal of Experimental Psychology: General, 128, 32-55. https://doi.org/10.1037//0096-3445.128.1.32
  10. Balota, D., Yap, M., & Cortese, M. (2006). Visual word recognition: the journey from features to meaning (a travel update). In In M. Traxler, & M. A. Gernsbacher (Eds. Handbook of psycholinguistics (2nd edition).
  11. Balota, D. A., Yap, M. J., Cortese, M. I, Watson, J. M. (2008). Beyond response latency: An RT distributional analysis of semantic priming. Journal of Memory & Language 59, 495-523. https://doi.org/10.1016/j.jml.2007.10.004
  12. Bates, D., & Sarkar, D., the R Core team. (2007). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-85.
  13. Brown, S. D. & Heathcote, A. (2008).The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. https://doi.org/10.1016/j.cogpsych.2007.12.002
  14. Brown, S., Ratcliff, R., & Smith, P. L. (2006). Evaluating methods for approximating stochastic differential equations. Journal of Mathematical Psychology, 50, 402-410. https://doi.org/10.1016/j.jmp.2006.03.004
  15. Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100, 432-459. Review, 15, 1209-1217. https://doi.org/10.1037/0033-295X.100.3.432
  16. Gillespie D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral, Phys. Rev. E, 54, 2084. https://doi.org/10.1103/PhysRevE.54.2084
  17. Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time. Psychology Review, 121(1), 1-32. https://doi.org/10.1037/a0034190
  18. Juhasz, B. J. (2005). Age of acquisition effects in word and picture identification. Psychological Bulletin, 131, 684-712. https://doi.org/10.1037/0033-2909.131.5.684
  19. Juhasz, B. J., Gullick, M., & Shesler, L. (2011). The effects of age-of-acquisition on ambiguity resolution; Evidence from eye movements. Journal of Eye Movement Research, 4, 1-14.
  20. Juhasz, B.J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of Experimental Psychology: Learning, Memory & Cognition, 29, 1312-1318. https://doi.org/10.1037/0278-7393.29.6.1312
  21. Juhasz, B. J., & Rayner, K. (2006). The role of age-of-acquisition and word frequency in reading: Evidence from eye fixation durations. Visual Cognition, 13, 846-863. https://doi.org/10.1080/13506280544000075
  22. Kliegl, R., Nuthmann, A., & Engbert, R. (2006). Tracking the mind during reading: The influence of past, present, and future words on fixation durations. Journal of Experimental Psychology: General, 135, 13-35.
  23. Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16, 798-817. https://doi.org/10.3758/PBR.16.5.798
  24. Morrison, C. M., & Ellis, A. W. (2000). Real age of acquisition effects in word naming and lexical decision. British Journal of Psychology, 91, 167-180. https://doi.org/10.1348/000712600161763
  25. Morrison, AP, Frame L, & Larkin, W. (2003). Relationships between trauma and psychosis: A review and integration. Br J Clin Psychol. 42: 331-353. https://doi.org/10.1348/014466503322528892
  26. Pollatsek, A., Reichle, E. D., & Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the interface between cognition and eye-movement control. Cognitive Psychology, 52, 1-52. https://doi.org/10.1016/j.cogpsych.2005.06.001
  27. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59-108. https://doi.org/10.1037/0033-295X.85.2.59
  28. Ratcliff, R.(1988). Continuous versus discrete information processing: Modeling the accumulation of partial information. Psychological Review, 95, 238-255. https://doi.org/10.1037/0033-295X.95.2.238
  29. Ratcliff, R. (2001). Putting noise into neurophysiological models of simple decision making. Nature Neuroscience, 4, 336. https://doi.org/10.1038/85956
  30. Ratcliff, R. (2001). Diffusion and random walk processes. International encyclopedia of the social and behavioral sciences, Oxford, England: Elsevier, 6, 3668-3673.
  31. Ratcliff, R. (2002). A diffusion model account of reaction time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin and Review, 9, 278-291. https://doi.org/10.3758/BF03196283
  32. Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111(1), 159-182. https://doi.org/10.1037/0033-295x.111.1.159
  33. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Compuation, 20, 873-922. https://doi.org/10.1162/neco.2008.12-06-420
  34. Ratcliff, R., & Strayer, D.(2013). Modeling simple driving tasks with a one boundary diffusion model. Psychonomic bulletin & review, 21(3), 577-589. https://doi.org/10.3758/s13423-013-0541-x
  35. Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to the contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438-481. https://doi.org/10.3758/BF03196302
  36. Ratcliff, R., & Van Dongen, H. P. A. (2011). A diffusion model for one choice reaction time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences, 108, 11285-11290. https://doi.org/10.1073/pnas.1100483108
  37. Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of word frequency and predictability on eye movements in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30, 720-732. https://doi.org/10.1037/0096-1523.30.4.720
  38. Rayner,K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory & Cognition, 14(3), 191-201. https://doi.org/10.3758/BF03197692
  39. Rayner, K., & McConkie, G. W. (1976). What guides a reader's eye movements? Vision Research, 16, 829-837. https://doi.org/10.1016/0042-6989(76)90143-7
  40. Rayner, K., Murphy, L., Henderson, J. M.. & Pollatsek, A. (1989). Selective attentional dyslexia. Cognitive Neuropsychology, 6, 357-378. https://doi.org/10.1080/02643298908253288
  41. Rayner, K., & Pollatsek, A. (1981) Eye movement control during reading: Evidence for direct control. Quarterly Journal of Experimental Psychology, 33A, 351-373. https://doi.org/10.1080/14640748108400798
  42. Rayner, K., Sereno, S. C., & Raney, G. E. (1996). Eye movement control in reading: A comparison of two types of models. Journal of Experimental Psychology: Human Perception and Performance, 22, 1188-1200. https://doi.org/10.1037//0096-1523.22.5.1188
  43. Reichle, E. D., Pollatsek, A., & Rayner, K. (2006). E-Z Reader: A cognitive-control, serial-attention model of eye-movement behavior during reading. Cognitive Systems Research, 7, 4-22. https://doi.org/10.1016/j.cogsys.2005.07.002
  44. Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105, 125-157. https://doi.org/10.1037/0033-295X.105.1.125
  45. Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye movement control in reading: Comparison to other models. Brain and Behavioral Sciences, 26, 445-476. https://doi.org/10.1017/S0140525X03000104
  46. Staub, A. (2011). The effect of lexical predictability on distributions of eye fixation durations. Psychon Bull Rev. 18, 371-376. https://doi.org/10.3758/s13423-010-0046-9
  47. Staub, A., & Benatar. A.(2013). Individual differences in fixation duration distributions in reading. Psychonomic Bulletin & Review, 20, 1304-1311. https://doi.org/10.3758/s13423-013-0444-x
  48. Staub, A., & Rayner, K. (2007). Eye movements and on-line comprehension processes. In G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 327-342). Oxford, UK: Oxford University Press.
  49. Staub, A., White, S. J., Drieghe, D., Hollway, E. C., & Rayner, K. (2010). Distributional effects of word frequency on eye fixation durations. Journal of Experimental Psychology: Human Perception and Performance, 36, 1280-1293. https://doi.org/10.1037/a0016896
  50. Traxler, M. J. (2012). Introduction to Psycholinguistics: Understanding Language Science. Boston, MA: Wiley-Blackwell.
  51. Van Zandt, T. (2000). How to fit a response time distribution. Psychonomic Bulletin and Review, 7, 424-465. https://doi.org/10.3758/BF03214357
  52. Wagenmakers, E.-J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 4, 3-22. https://doi.org/10.3758/BF03210769
  53. Yap, M. J., Balota, D. A., Tse, C.-S., & Besner, D. (2008). On the additive effects of stimulus quality and word frequency in lexical decision: Evidence for opposing interactive influences revealed by RT distributional analyses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 495-513. https://doi.org/10.1037/0278-7393.34.3.495
  54. Zevin, J. D., & Seidenberg, M. S. (2002). Age of acquisition effects in word reading and other tasks. Journal of Memory and Language, 47, 1-29. https://doi.org/10.1006/jmla.2001.2834