• Title/Summary/Keyword: diffusion model

Search Result 2,381, Processing Time 0.029 seconds

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • Innovative Converged Service and It's Adoption, Use and Diffusion : A Holistic Approach to Diffusion of Innovations, Combining Adoption-Diffusion and Use Diffusion Paradigms (디지털융합서비스의 수용, 사용, 확산에 관한 연구 : 혁신확산에 관한 수용-확산 및 사용-확산의 통합적 접근)

    • Sawng, Yeong-Wha;Rim, Myung-Hwan;Kim, Seong-Ho;Motohashi, Kazuyuki
      • Journal of Information Technology Applications and Management
      • /
      • v.17 no.2
      • /
      • pp.187-205
      • /
      • 2010
    • This study takes a holistic approach to understand the diffusion of IPTV services by combining the adoption-diffusion model and the use-diffusion model of innovation. IPTV service, a leading digital converged application coupling media content with telecommunications, has been recently launched commercially in Korea. We created a structural model of adoption-diffusion, using the perceived easeof-use and usefulness of TAM(Technology Acceptance Model) as mediating variables, and a structural model of use-diffusion, with the rate of use and the variety of use as mediating variables. To empirically analyze these models, non-users of IPTV were surveyed using the adoption-diffusion model to identify factors influencing their intention to subscribe to the service. Meanwhile, users of IPTV were surveyed using the use-diffusion model to determine the factors that influence their satisfaction with the service and their intention to re-use it. Under the adoption-diffusion model, we found that trialability, household innovativeness and perceived risk were the determinants of user satisfaction with IPTV, and perceived ease-of-use, the mediating factors. Under the use-diffusion model, complementarity and communication were shown to be the determinants of users' satisfaction with IPTV, and variety of use, the mediating factor. We also found that consumers' intention to re-use IPTV was strongly influenced by its relative advantage and perceived risk.

    • PDF

    Innovative Converged Service and It's Adoption, Use and Diffusion: A Holistic Approach to Diffusion of Innovations, Combining Adoption-Diffusion and Use Diffusion Paradigms (디지털융합서비스의 수용, 사용, 확산에 관한 연구: 혁신확산에 관한 수용-확산 및 사용-확산의 통합적 접근)

    • Song, Yeong-Hwa;Im, Myeong-Hwan;Motohashi, Kazuyuki;Kim, Seung-Ho
      • Proceedings of the Korea Database Society Conference
      • /
      • 2010.06a
      • /
      • pp.165-180
      • /
      • 2010
    • This study takes a holistic approach to understanding the diffusion of IPTV services by combining the adoption-diffusion model and the use-diffusion model of innovation. IPTV service, a leading Digital converged application coupling media content with telecom, has been recently launched commercially in Korea. We created a structural model of adoption-diffusion, using the perceived ease-of-use and usefulness of TAM(Technology Acceptance Model) as mediating variables, and a structural model of use-diffusion, with the rate of use and the variety of use as mediating variables. To empirically analyze these models, non-users of IPTV were surveyed using the adoption-diffusion model to identity factors influencing their intention to subscribe to the service. Meanwhile, users of IPTV were surveyed using the use-diffusion model to determine the factors that influence their satisfaction with the service and their intention to fe-use it. Under the adoption-diffusion model, we found that trialability, household innovativeness and perceived risk were the determinants of user satisfaction with IPTV, and perceived ease-of-use, the mediating factors. Under the use-diffusion model, complementarity and communication were shown to be the determinants of users' satisfaction with IPTV, and variety of use, the mediating factor. We also found that consumers' intention to re-use IPTV was strongly influenced by its relative advantage and perceived risk.

    • PDF

    Comparison of the Bass Model and the Logistic Model from the Point of the Diffusion Theory (확산이론 관점에서 로지스틱 모형과 Bass 모형의 비교)

    • Hong, Jung-Sik;Koo, Hoon-Young
      • Journal of the Korean Operations Research and Management Science Society
      • /
      • v.37 no.2
      • /
      • pp.113-125
      • /
      • 2012
    • The logistic model and the Bass model have diverse names and formulae in diffusion theory. This diversity makes users or readers confused while it also contributes to the flexibility of modeling. The method of handling the integration constant, which is generated in process of deriving the closed form solution of the differential equation for a diffusion model, results in two different 'actual' models. We rename the actual four models and propose the usage of the models with respect to the purpose of model applications. The application purpose would be the explanation of historical diffusion pattern or the forecasting of future demand. Empirical validation with 86 historical diffusion data shows that misuse of the models can draw improper conclusions for the explanation of historical diffusion pattern.

    Development of Simulation Model for Diffusion of Oil Spill in the Ocean (II) - Application of Simulation model to the Field (해양유출기름의 확산 시뮬레이션 모델 개발(II) - 유류확산모델의 현장 적용)

    • 김기철;이중우;강신영;도덕희
      • Journal of Korean Port Research
      • /
      • v.13 no.2
      • /
      • pp.427-436
      • /
      • 1999
    • Simulation model for diffusion of oil spill is developed. The model can perform real time simulation in the case of oil spill accident in the ocean. The model consists of three dimensional ocean circulation model and model for diffusion of oil spill. Real time flow fields which are used in the calculation of advection of oil spill are obtained in the three dimensional ocean circulation model. The model for diffusion of oil spill includes the evaporation dissolution emulsification and downward diffusion. For the verification of the model it is applied to the oil spill from the accident of Sea Prince. The results shows good agreement.

    • PDF

    An Analysis of Hall field in the Base Region of Magnetotransistors Using the Diffusion Model (확산모델을 이용한 자기트랜지스터의 베이스 영역에서의 홀 전계 해석)

    • 이승기;강욱성;한민구
      • The Transactions of the Korean Institute of Electrical Engineers
      • /
      • v.43 no.7
      • /
      • pp.1127-1134
      • /
      • 1994
    • The analytical model for the induced Hall field in the magnetotransistor considering the diffusion of carriers has been proposed and verified by experiment and simulation. Previous models for the induced Hall field in the magnetotransistor do not consider the influence of the diffusion carrier transport. However, the carrier diffusion in the base region of magnetotransistors cannot be neglected and should be considered to evaluated the Hall field in the magnetotransistors accurately. We have measured the Hall voltage in the base region of the fabricated magnetotransistors. The measured values have been compared with the numerical results evaluated from our diffusion model as well as the calculated results from the conventional model. The evaluated Hall voltage from the diffusion model agrees well with the measured values while the sign of the Hall voltage calculated by the conventional model is opposite to that of the measured values in the saturation region. This discrepancy is due to the fact that the diffusion model considers the carrier diffusion while the conventional one does not. The Hall field model including the influence of carrier diffusion may be an important tool to optimize the device structure and to understand the operating principle of the magnetotransistor.

    Forecasting the Growth of Smartphone Market in Mongolia Using Bass Diffusion Model (Bass Diffusion 모델을 활용한 스마트폰 시장의 성장 규모 예측: 몽골 사례)

    • Anar Bataa;KwangSup Shin
      • The Journal of Bigdata
      • /
      • v.7 no.1
      • /
      • pp.193-212
      • /
      • 2022
    • The Bass Diffusion Model is one of the most successful models in marketing research, and management science in general. Since its publication in 1969, it has guided marketing research on diffusion. This paper illustrates the usage of the Bass diffusion model, using mobile cellular subscription diffusion as a context. We fit the bass diffusion model to three large developed markets, South Korea, Japan, and China, and the emerging markets of Vietnam, Thailand, Kazakhstan, and Mongolia. We estimate the parameters of the bass diffusion model using the nonlinear least square method. The diffusion of mobile cellular subscriptions does follow an S-curve in every case. After acquiring m, p, and q parameters we use k-Means Cluster Analysis for grouping countries into three groups. By clustering countries, we suggest that diffusion rates and patterns are similar, where countries with emerging markets can follow in the footsteps of countries with developed markets. The purpose was to predict the timing and the magnitude of the market maturity and to determine whether the data follow the typical diffusion curve of innovations from the Bass model.

    Analysis of Diffusion Pattern in New Product and Services Based on Two-pieces Bass Model (신제품 및 서비스에 있어 이분조각 Bass모형에 의한 확산 패턴 분석)

    • Hong, Seok-Kee;Hong, Jung-Sik
      • IE interfaces
      • /
      • v.23 no.4
      • /
      • pp.337-348
      • /
      • 2010
    • The Bass model is the most widely used model in research of new product diffusion because it presents a nice explanation on the diffusion process of new products. However, it has a limitation that its performance of fitness is lower as the available data become less and also, the diffusion curve is bell-shape and so, it can not represent the various diffusion patterns. Recently, a two-pieces Bass model is developed and applied to analyze diffusion of 10 products. The results are encouraging in terms of fitness. However, diffusion pattern is not dealt with in the paper. In this paper, analysis of diffusion pattern is in depth addressed in two-pieces Bass model. It is shown that the diffusion curves are divided into 3 types with respect to the peak adoption rate and each type is divided into 2 types further. Takeoff time of a diffusion process is analyzed by using the inflection point and regime-change time where it represents the point that imitation and innovation parameters change. Empirical studies for 68 products(28 domestic products and 40 USA products) are performed to analyze the diffusion pattern. Findings are that diffusion patterns of all products except 1 USA product show type I and regime-change time becomes shorter as the introduction time of the product is later in domestic products and regime-change time can be regarded as a takeoff time in 47% of total 68 products.

    Two Pieces Extension of the Bass Diffusion Model (Bass 확산모형의 이분 확장)

    • Hong, Jung-Sik;Eom, Seok-Jun
      • Journal of the Korean Operations Research and Management Science Society
      • /
      • v.34 no.4
      • /
      • pp.15-26
      • /
      • 2009
    • Bass diffusion model have played a central role in studying the diffusion of the new products since 1969, the year of publication of Bass model. Almost 750 publications based on the Bass diffusion model have explored extensions and applications. Extension models can be divided into two types. One is the model containing marketing-mix variables and the other is the model containing additional parameters. This paper presents another extension model of the latter type. Our model allows the time varying coefficients of innovation and imitation. Two pieces approximation of time varying coefficients is introduced and it's parameters are estimated based on NLS(Non-Linear Mean Square) method. Empirical studies are performed and the results show that our model is superior to the basic Bass model and the NUI(Non-Uniform Influence) model which is the well-known extension of the Bass model. The model developed in this paper is, also, transformed into the Bass model with the ready potential adopters in order to enhance the descriptive power.