DOI QR코드

DOI QR Code

Evanescent-field Q-switched Yb:YAG Channel Waveguide Lasers with Single- and Double-pass Pumping

  • Bae, Ji Eun (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Choi, Sun Young (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Krankel, Christian (Zentrum fur Lasermaterialien, Leibniz-Institut fur Kristallzuchtung) ;
  • Hasse, Kore (Institut fur Laser-Physik, Universitat Hamburg) ;
  • Rotermund, Fabian (Department of Physics, Korea Advanced Institute of Science and Technology)
  • Received : 2020.12.11
  • Accepted : 2021.02.05
  • Published : 2021.04.25

Abstract

A femtosecond-laser inscribed Yb:YAG surface channel waveguide (WG) laser with single-walled carbon nanotubes deposited on the top surface of the WG was passively Q-switched by evanescent field interaction. Q-switched operation of the 14-mm-long compact Yb:YAG WG laser was achieved near 1031 nm with two different pumping schemes (single- and double-pass pumping) with an output coupling transmission of 91%. The Q-switched pulse characteristics depending on the absorbed pump power were investigated for both pumping geometries and analyzed in detail based on theoretical modeling. The best performances (energy/pulse duration) for each configuration were 204.4 nJ/75 ns at a repetition rate of 1.87 MHz, and 201.1 nJ/81 ns at 1.75 MHz for single- and double-pass pumping, respectively.

Keywords

References

  1. F. Chen and J. R. V. de Aldana, "Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining," Laser Photonics Rev. 8, 251-275 (2014). https://doi.org/10.1002/lpor.201300025
  2. T. Calmano and S. Muller, "Crystalline waveguide lasers in the visible and near-infrared spectral range," IEEE J. Sel. Top. Quantum Electron. 21, 401-413 (2015). https://doi.org/10.1109/JSTQE.2014.2350022
  3. T. Calmano, A.-G. Paschke, S. Muller, C. Krankel, and G. Huber, "Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription," Opt. Express 21, 25501-25508 (2013). https://doi.org/10.1364/OE.21.025501
  4. T. Calmano, M. Ams, P. Dekker, M. J. Withford, and C. Krankel, "2 W single-longitudinal-mode Yb:YAG distributed-feedback waveguide laser," Opt. Lett. 42, 2734-2737 (2017). https://doi.org/10.1364/OL.42.002734
  5. E. Kifle, P. Loiko, C. Romero, J. R. V. de Aldana, V. Zakharov, A. Veniaminov, U. Griebner, V. Petrov, P. Camy, A. Braud, M. Aguilo, F. Diaz, and X. Mateos, "Ultrafast laser inscription and -2 ㎛ laser operation of Y-branch splitters in monoclinic crystals," J. Lightwave Technol. 38, 4374-4384 (2020). https://doi.org/10.1109/jlt.2020.2986474
  6. W. Tang, W. Zhang, X. Liu, S. Liu, R. Stoian, and G. Cheng, "Tubular depressed cladding waveguide laser realized in Yb:YAG by direct inscription of femtosecond laser," J. Opt. 17, 105803 (2015). https://doi.org/10.1088/2040-8986/17/10/105803
  7. S. Y. Choi, T. Calmano, M. H. Kim, D.-I. Yeom, C. Krankel, G. Huber, and F. Rotermund, "Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes," Opt. Express 23, 7999-8005 (2015). https://doi.org/10.1364/OE.23.007999
  8. M. H. Kim, T. Calmano, S. Y. Choi, B. J. Lee, I. H. Baek, K. J. Ahn, D.-I. Yeom, C. Krankel, and F. Rotermund, "Monolayer graphene coated Yb:YAG channel waveguides for Q-switched laser operation," Opt. Mater. Express 6, 2468-2474 (2016). https://doi.org/10.1364/OME.6.002468
  9. S. Hakobyan, V. J. Wittwer, K. Hasse, C. Krankel, T. Sudmeyer, and T. Calmano, "Highly efficient Q-switched Yb:YAG channel waveguide laser with 5.6 W of average output power," Opt. Lett. 41, 4715-4718 (2016). https://doi.org/10.1364/OL.41.004715
  10. S. Y. Choi, T. Calmano, F. Rotermund, and C. Krankel, "2-GHz carbon nanotube mode-locked Yb:YAG channel waveguide laser," Opt. Express 26, 5140-5145 (2018). https://doi.org/10.1364/OE.26.005140
  11. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, "1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler," Opt. Express 21, 7943-7950 (2013). https://doi.org/10.1364/OE.21.007943
  12. A. Choudhary, S. Dhingra, B. D'Urso, T. L. Parsonage, K. A. Sloyan, R. W. Eason, and D. P. Shepherd, "Q-switched operation of a pulsed-laser-deposited Yb:Y2O3 waveguide using graphene as a saturable absorber," Opt. Lett. 39, 4325-4328 (2014). https://doi.org/10.1364/ol.39.004325
  13. A. Choudhary, S. Dhingra, B. D'Urso, P. Kannan, and D. P. Shepherd, "Graphene Q-switched mode-locked and Q-switched ion-exchanged waveguide lasers," IEEE Photon. Technol. Lett. 27, 646-649 (2015). https://doi.org/10.1109/LPT.2015.2389631
  14. Y. Ren, C. Cheng, Y. Jia, Y. Jiao, D. Li, M. D. Mackenzie, A. K. Kar, and F. Chen, "Switchable single-dual-wavelength Yb,Na:CaF2 waveguide lasers operating in continuous-wave and pulsed regimes," Opt. Mater. Express 8, 1633-1641 (2018). https://doi.org/10.1364/OME.8.001633
  15. J. E. Bae, X. Mateos, M. Aguilo, F. Diaz, J. R. V. de Aldana, C. Romero, H. Lee, and F. Rotermund, "Transition of pulsed operation from Q-switching to continuous-wave mode-locking in a Yb:KLuW waveguide laser," Opt. Express 28, 18027-18034 (2020). https://doi.org/10.1364/OE.395701
  16. J. W. Kim, S. Y. Choi, S. Aravazhi, M. Pollnau, U. Griebner, V. Petrov, S. Bae, K. J. Ahn, D.-I. Yeom, and F. Rotermund, "Graphene Q-switched Yb:KYW planar waveguide laser," AIP Adv. 5, 017110 (2015). https://doi.org/10.1063/1.4905785
  17. A. Choudhary, S. J. Beecher, S. Dhingra, B. D'Urso, T. L. Parsonage, J. A. Grant-Jacob, P. Hua, J. I. Mackenzie, R. W. Eason, and D. P. Shepherd, "456-mW graphene Q-switched Yb: yttria waveguide laser by evanescent-field interaction," Opt. Lett. 40, 1912-1915 (2015). https://doi.org/10.1364/OL.40.001912
  18. J. W. Kim, S. Y. Choi, J. E. Bae, M. H. Kim, Y. U. Jeong, E. Kifle, X. Mateos, M. Aguilo, F. Diaz, U. Griebner, V. Petrov, G.-H. Kim, and F. Rotermund, "Comparative study of Yb:KYW planar waveguide lasers Q-switched by direct-and evanescent-field interaction with carbon nanotubes," Opt. Express 27, 1488-1496 (2019). https://doi.org/10.1364/OE.27.001488
  19. J. E. Bae, T. G. Park, E. Kifle, X. Mateos, M. Aguilo, F. Diaz, C. Romero, J. R. V. de Aldana, H. Lee, and F. Rotermund, "Carbon nanotube Q-switched Yb:KLuW surface channel waveguide lasers," Opt. Lett. 45, 216-219 (2020). https://doi.org/10.1364/ol.45.000216
  20. R. J. Beach, "CW Theory of quasi-three level end-pumped laser oscillators," Opt. Commun. 123, 385-393 (1996). https://doi.org/10.1016/0030-4018(95)00497-1
  21. A. Sato, K. Asai, and T. Itabe, "Double-pass-pumped Tm:YAG laser with a simple cavity configuration," Appl. Opt. 37, 6395-6400 (1998). https://doi.org/10.1364/AO.37.006395
  22. C. Li, D. Shen, J. Song, N. S. Kim, and K.-I. Ueda, "Theoretical and experimental investigations of diode-pumped Tm:YAG laser in active mirror configuration," Opt. Rev. 6, 439-442 (1999). https://doi.org/10.1007/s10043-999-0439-z
  23. X. Mateos, S. Lamrini, K. Scholle, P. Fuhrberg, S. Vatnik, P. Loiko, I. Vedin, M. Aguilo, F. Diaz, U. Griebner, and V. Petrov, "Holmium thin-disk laser based on Ho:KY(WO4)2/KY(WO4)2 epitaxy with 60% slope efficiency and simplified pump geometry," Opt. Lett. 42, 3490-3493 (2017). https://doi.org/10.1364/OL.42.003490
  24. S. Hong, B. Kong, Y. S. Lee, and K. Oh, "Optimization of diode-pumped cesium vapor laser using frequency locked pump laser," Curr. Opt. Photon. 2, 443-447 (2018). https://doi.org/10.3807/COPP.2018.2.5.443
  25. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, "Passive Q-switching of microchip lasers based on Ho:YAG ceramics," Appl. Opt. 55, 4877-4887 (2016). https://doi.org/10.1364/AO.55.004877