과제정보
본 논문은 과학기술정보통신부 지역SW서비스 사업화 지원과제, 한국연구재단 기초연구사업, 산업통상자원부와 한국산업기술진흥원 지역혁신클러스터 육성사업(R&D P0004797)의 지원으로 수행되었습니다.
참고문헌
- M. S. Kim, S. M. Shin, D. H. Kim, and S. h. Rhee. "A study on the algorithm for determining back bead generation in GMA welding using deep learning," Journal of Welding and Joining, Vol. 36, No. 2, pp. 74-81, 2018. https://doi.org/10.5781/jwj.2018.36.2.11
- J. H. Kang, and N. K. Ku. "Verification of Resistance Welding Quality Based on Deep Learning," Journal of the Society of Naval Architects of Korea, Vol. 56, No. 6, pp. 473-479, 2019. https://doi.org/10.3744/SNAK.2019.56.6.473
- J. H. Kim, M.H. Ko, N. K. Ku. "A Study on Resistance Spot Welding Failure Detection Using Deep Learning Technology," Journal of Computational Design and Eng, Vol. 24, No. 2, pp. 161-168, 2019.
- L. Alvarez, L. Baumela, P. Henriquez, and P. M. Neila, "Morphological Snakes," Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 2197-2202, 2010.
- Z. Wang, and Y. Liu, "Active contour model by combining edge and region information discrete dynamic systems," Advances in Mechanical Engineering Vol. 9, No. 3, pp. 1-10, 2017.
- J. Ma, D. Wang, X. P. Wang, and X. Yang, "A Fast Algorithm for Geodesic Active Contours with Applications to Medical Image Segmentation," Computer Vision and Pattern Recognition pp. 1-10, 2020.
- L. Alvarez, L. Baumela, P. M. Neila, and P. Henriquez, "A Real Time Morphological Snakes Algorithm," Image Processing on Line, Vol. 2, pp. 1-7, 2014. https://doi.org/10.5201/ipol.2012.abmh-rtmsa
- X.X.,Yin, Y. Jian, Y. Zhang, J. Wu, H. Lu, and M. Y. Su. "Automatic breast tissue segmentation in MRIs with morphology snake and deep denoiser training via extended Stein's unbiased risk estimator." Health Information Science and Systems, Vol.9, No.1, pp.1-21, 2021.
- O. Haffner, E. Kucera, and S. Kozak, "Weld Segmentation for Diagnostic and Evaluation Method," Cybernetics & Informatics, Levoca, Slovakia, pp. 1-6, 2016.
- J. Mlyahilu,Y. B Kim, J. E Lee and J. N. Kim. An Algorithm of Welding Bead Detection and Evaluation Using and Multiple Filters Geodesic Active Contour. The Journal of Korea Institute of Convergence Signal Processing, Vol.22, No.3, pp.141-148, 2021. https://doi.org/10.23087/JKICSP.2021.22.3.009
- J. W. Baek, and S. G. Kong, "Faster R-CNN Classifier Structure Design for Detecting Weld Surface Defects," In Proceedings of KIIT Conference, pp. 149-152, 2018.
- O. Haffner, E. Kucera, P. Drahos, and J. Ciganek, "Using Entropy for Welds Segmentation and Evaluation. Entropy," Vol.21, No.12, pp.1168, 2019. https://doi.org/10.3390/e21121168
- T. W. Kim, C. M. Han, and H. W. Choi, " Welding Quality Inspection using Deep Learning," The Korean Society of Manufacturing Process Engineers, pp. 18-18, 2020.