DOI QR코드

DOI QR Code

Electromagnetic field and initial stress on a porothermoelastic medium

  • Abd-Elaziz, Elsayed M. (Ministry of Higher Education, Zagazig Higher Institute of Eng. & Tech.)
  • Received : 2020.04.05
  • Accepted : 2020.09.11
  • Published : 2021.04.10

Abstract

In this study, the porothermoelastic problem with the effect of the magnetic field and initial stress was investigated. We applied normal mode analysis to solve the resulting non-dimensional coupled equations. Numerical results for the displacements, temperature distribution, pore pressure, stresses, induced electric field and induced magnetic field distributions are presented graphically and discussed. The medium deformed because of thermal shock and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the medium. Numerical analyses are given graphically on the square (2D) and cubic (3D) domains to illustrate the effects of the porosity parameter, magnetic field and initial stress parameter on the physical variables.

Keywords

References

  1. Abbas, I.A. and Kumar, R. (2016), "2D deformation in initially stressed thermoelastic half-space with voids", Steel Compos. Struct., 20(5), 1103-1117. https://doi.org/10.1166/jctn.2014.3454.
  2. Abd-Alla, A.M. and Ahmed, S.M. (1998), "Rayleigh Waves in an Orthotropic Thermoelastic Medium under Gravity and Initial Stress", Earth Moon Planet., 75, 185-197. https://doi.org/10.1007/BF02592996.
  3. Abd-Elaziz, E.M. and Hilal, M.I.M. (2018), "The influence of Thomson effect and inclined loads in an electro-magneto-thermoelastic solid with voids under Green-Naghdi theories", J. Ocean Eng. Sci., 3(3), 253-264. https://doi.org/10.1016/j.joes.2018.08.003.
  4. Abd-Elaziz, E.M. and Othman, M.I.A. (2019), "Effect of Thomson and thermal loading due to laser-pulse in a magneto-thermoelastic porous medium with energy dissipation", Zeitschrift fur Angewandte Mathematik und Mechanik, 99(8), 1-18. https://doi.org/10.1002/zamm.201900079.
  5. Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "On a magneto-poro-thermoelastic medium under the influence of the Seebeck effect", Int. J. Numer. Meth. Geomech., 44, 705-719. https://doi.org/10.1002/nag.3039.
  6. Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413.
  7. Abouelregal, A.E. and Abo-Dahab, S.M. (2014), "Dual-phase-lag diffusion model for thomson's phenomenon on elctromagneto-thermoelastic an infinitely long solid cylinder", J. Comput. Theor. Nanosci., 11(4), 1-9. https://doi.org/10.1166/jctn.2014.3459.
  8. Abousleiman, Y. and Ekbote, S. (2005), "Solutions for the inclined borehole in a poro-thermo-elastic transversely isotropic medium", ASME J. Appl. Mech., 72(1), 102-114. https://doi.org/10.1115/1.1825433.
  9. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  10. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  11. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  12. Allam, M.N., Elsibai, K.A. and Abouelergal, A.E. (2009), "Electromagneto-thermoelastic problem in a thick plate using Green and Naghdi theory", Int. J. Eng. Sci., 47, 680-690. https://doi.org/10.1016/j.ijengsci.2008.10.013.
  13. Atwa, S.Y. (2014), "Generalized magneto-thermoelasticity with two temperature andinitial stress under Green-Naghdi theory", Appl. Math. Model., 38, 5217-30. https://doi.org/10.1016/j.apm.2014.04.0.
  14. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  15. Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
  16. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  17. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  18. Biot, M.A. (1956a), "General solutions of the equations of elasticity and consolidation for a porous material", J. Appl. Mech., 23, 91-96. https://doi.org/10.1115/1.4011213
  19. Biot, M.A. (1956b), "Theory of propagation of elastic waves in a fluid-saturated porous solid. I Low frequency range. II. Higher frequency range", J. Acoust. Soc. Am., 28, 168-191. https://doi.org/10.1121/1.1908239.
  20. Biot, M.A. (1962), "Mechanics of deformation and acoustic propagation in porous media", J. Appl. Phys., 33, 1482-1498. https://doi.org/10.1063/1.1728759.
  21. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  22. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  23. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  24. Chirila, A. and Marin, M. (2018), "The theory of generalized thermoelasticity with fractional order strain for dipolar materials with double porosity", J. Mater. Sci., 53(5), 3470-3482. https://doi.org/10.1007/s10853-017-1785-z.
  25. Choudhuri, S.K.R. (1984), "Electro-magneto-thermoelastic plane waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22, 519-530. https://doi.org/10.1016/0020-7225(84)90054-5.
  26. Coussy, O. (1991), "Thermoporoelastic response of a borehole", Tran. Porous Media, 21, 121-146.
  27. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  28. Feng, G. and Yang, X.J. (2016), "Fractional Maxwell fluid with fractional derivative without singular kernel", Therm. Sci., 20(3), 871-877. https://doi.org/10.2298/TSCI16S3871G.
  29. Ghassemi A., Tao, Q. and Diek, A. (2009), "Influence of coupled chemo-poro-thermoelastic processes on pore pressure and stress distributions around a wellbore in swelling shale", J. Petroleum. Sci. Eng., 67, 57-64. https://doi.org/10.1016/j.petrol.2009.02.015.
  30. Ghassemi, A. and Diek, A. (2002), "Poro-thermoelasticity for swelling shales", J. Petroleum. Sci. Eng., 34, 123-135. https://doi.org/10.1016/S0920-4105(02)00159-6.
  31. Ghassemi, A. and Zhang, Q. (2004), "A transient fictitious stress boundary element method for Poro-thermoelastic media", J. Eng. Anal. Bound. Elem., 28(11), 1363-1373. https://doi.org/10.1016/j.enganabound.2004.05.003.
  32. Hussain, F., Ellahi, R. and Zeeshan, A. (2018), "Mathematical models of electro-magneto-hydro-dynamic multiphase flows synthesis with nano sized hafnium particles", Appl. Sci., 8(2), 275-292. https://doi.org/10.3390/app8020275.
  33. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  34. Jabbari, M. and Dehbani, H. (2011), "An exact solution for quasistatic poro-thermoelasticity in spherical coordinate", Iran. J. Mech. Eng., 12(1), 86-108. https://doi.org/10.1007/978-007-2739_1008.
  35. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., ... & Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  36. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "On pre stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0.
  37. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "On exact wave propagation analysis of triclinic material using three dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487.
  38. Kumar, R., Kumar, S. and Gourla, M.G. (2016), "Axisymmetric Problem in Thermoporoelastic Medium", Am. J. Eng. Res., 5(4), 01-14.
  39. Li, X., Cui, L. and Roegiers, J.C. (1998), "Thermoporoelastic modeling of wellbore stability in non-hydrostatic stress field", Int. J. Rock Mech. Min. Sci., 35(4/5), 584-588. https://doi.org/10.1016/S0148-9062(98)00079-5.
  40. Mahmoud, S.R. (2012), "Influence of rotation and generalized magneto-thermoelastic on Rayleigh waves in a granular medium under effect of initial stress and gravity field", Meccanica, 47, 1561-1579. https://doi.org/10.1007/s11012-011-9535-9.
  41. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  42. Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5.
  43. Marin, M. (2010), "Lagrange identity method for microstretch thermoelastic materials", J. Math. Anal. Appl., 363(1), 275-286. https://doi.org/10.1016/j.jmaa.2009.08.045.
  44. Marin, M. and Nicaise, S. (2016), "Existence and stability results for thermoelastic dipolar bodies with double porosity", Contin. Mech. Thermodyn., 28(6), 1645-1657. https://doi.org/10.1007/s00161-016-0503-4.
  45. Marin, M., Craciun, E.M. and Pop, N. (2016) "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25 (1-2), 175-196.
  46. Marin, M., Ellahi, R. and Chirila, A. (2017), "On solutions of Saint-Venant's problem for elastic dipolar bodies with voids", Carpat. J. Math., 33(2), 219-232. https://doi.org/10.37193/CJM.2017.02.09
  47. Marin, M., Vlase, S., Ellahi, R. and Bhatti, M.M. (2019), "On the partition of energies for the backward in time problem of thermoelastic materials with a dipolar structure", Symmetry, 11(7), 1-16. https://doi.org/10.3390/sym11070863.
  48. McTigue, D.F. (1986),"Thermoelastic response of fluid-saturated porous rock", J. Geophys. Res., 91(B9), 9533-9542. https://doi.org/10.1029/JB091iB09p09533.
  49. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., ... & Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  50. Othman, M.I.A and Abd-Elaziz, E.M. (2017), "Plane waves in a magneto-thermoelastic solids with voids and microtemperatures due to hall current and rotation", Result. Phys., 7, 4253-4263. https://doi.org/10.1016/j.rinp.2017.10.053.
  51. Othman, M.I.A. (2005), "Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time", Multi. Model. Mater. Struct., 1(3), 231-250. https://doi.org/10.1163/157361105774538557.
  52. Othman, M.I.A. and Eraki, E.E.M. (2017), "Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model", Mech. Bas. Des. Struct. Mach., 45(2), 145-159. https://doi.org/10.1080/15397734.2016.1152193.
  53. Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-thermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5),1225-1243. https://doi.org/10.1007/s11012-014-9879-z.
  54. Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2014), "The effect of rotation on fiber-reinforced under generalized magneto-thermoelasticity subject to thermal loading due to laser pulse: Comparison of different theories", Can. J. Phys., 92(9), 1002-1015. https://doi.org/10.1139/cjp-2013-0321.
  55. Othman, M.I.A., Hasona, W.M. and Abd-Elaziz, E.M. (2015), "Effect of rotation and initial stresses on generalized micropolar thermo-elastic medium with three-phase-lag", J. Compos. Theor. Nanosci., 12, 2030-2040. https://doi.org/10.1166/jctn.2015.3983.
  56. Othman, M.I.A., Lotfy, Kh. and Farouk, R.M. (2009), "Transient disturbance in a half-space using generalized magneto-thermoelasticity with internal heat source", Acta Physica Polonica A, 116(2), 185-192. https://doi.org/10.12693/APhysPolA.116.185.
  57. Othman, M.I.A., Tantawi, R.S. and Abd-Elaziz, E.M. (2016), "Effect of initial stress on a thermoelastic medium with voids and microtemperatures", J. Porous Media, 19(2), 155-172. https://doi.org/10.1615/JPorMedia.v19.i2.40.
  58. Othman, M.I.A., Tantawi, R.S. and Hilal, M.I.M. (2018), "Laser pulse, initial stress and modified Ohm's law in micropolar thermoelasticity with microtemperatures", Result. Phys., 8, 642-653. https://doi.org/10.1016/j.rinp.2017.12.059.
  59. Palciauskas, V.V. and Domenico, P.A. (1982) "Characterization of drained and undrained response of thermally loaded repository rocks", Water Resour. Res., 18, 281-290. https://doi.org/10.1029/WR018i002p00281.
  60. Paria, G.B. (1966), "Magneto-elasticity and magneto-thermoelasticity", Adv. Appl. Mech., 10, 73-112. https://doi.org/10.1016/S0065-2156(08)70394-6.
  61. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. http://dx.doi.org/10.12989/cac.2020.25.4.311.
  62. Santwana, B. and Choudhuri, S.K.R. (1997), "Magneto-thermoelastic interactions in an infinite isotropic elastic cylinder subjected to a periodic loading", Int. J. Eng. Sci., 35, 437-444. https://doi.org/10.1016/S0020-7225(96)00070-5.
  63. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  64. Singh, B. (2011), "On propagation of plane waves in generalized porothermoelasticity", Bull. Seismol. Soc. Am., 101, 756-762. http://dx.doi.org/10.1785/0120100091.
  65. Singh, B. (2013), "Reflection of plane waves from a free surface of a porothermoelastic solid half-space", J. Porous Media, 16, 945-957. http://dx.doi.org/10.1615/JPorMedia.v16.i10.60.
  66. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  67. Yang, X.J., Machado, J.A.T., Cattani, C. and Gao, F. (2017), "On a fractal LC-electric circuit modeled by local fractional calculus", Commun. Nonlin. Sci. Numer. Simul., 47, 200-206. https://doi.org/10.1016/j.cnsns.2016.11.017.
  68. Youssef, H.M. (2007), "Theory of generalized porothermoelasticity", Int. J. Rock Mech. Min. Sci., 44, 222-227. https://doi.org/10.1016/j.ijrmms.2006.07.001.
  69. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  70. Zenkour, A.M., Abouelregal, A.E., Alnefaie, KA. and Abu-Hamdeh, N.H. (2017), "Seebeck effect on a magneto-thermoelastic long solid cylinder with temperature-dependent thermal conductivity", Eur. J. Pure Appl. Math., 10(4), 786-808.
  71. Zhao, Y., Baleanu, D., Cattani, C., Cheng, D.F. and Yang, X.J. (2013), "Maxwell's equations on Cantor sets: a local fractional approach", Adv. High Energy Phys., 2013, Article ID 686371, 6. https://doi.org/10.1155/2013/686371.