DOI QR코드

DOI QR Code

Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods

  • Kim, Suyoung (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Park, Yujin (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Kim, Gidon (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency)
  • Received : 2020.11.10
  • Accepted : 2021.03.26
  • Published : 2021.03.31

Abstract

Xylella fastidiosa is the most damaging pathogen in many parts of the world. To increase diagnostic capability of X. fastidiosa in the field, the loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assay were developed to mqsA gene of citrate-synthase (XF 1535) X. fastidiosa and evaluated for specificity and sensitivity. Both assays were more robust than current published tests for detection of X. fastidiosa when screened against 16 isolates representing the four major subgroups of the bacterium from a range of host species. No cross reaction with DNA from healthy hosts or other species of bacteria has been observed. The LAMP and PCR assays could detect 10-4 pmol and 100 copies of the gene, respectively. Hydroxynaphthol blue was evaluated as an endpoint detection method for LAMP. There was a significant color shift that signaled the existence of the bacterium when at least 100 copies of the target template were present.

Keywords

References

  1. Berisha, B., Chen, Y. D., Zhang, G. Y., Xu, B. Y. and Chen, T. A. 1998. Isolation of Peirce's disease bacteria from grapevines in Europe. Eur. J. Plant Pathol. 104: 427-433. https://doi.org/10.1023/A:1008655621235
  2. Chen, J., Civerolo, E., Tubajika, K., Livingston, S. and Higbee, B. 2008. Hypervariations of a protease-encoding gene, PD0218 (pspB), in Xylella fastidiosa strains causing almond leaf scorch and Pierce's disease in California. Appl. Environ. Microbiol. 74: 3652-3657. https://doi.org/10.1128/AEM.02386-07
  3. Chen, J., Groves, R., Civerolo, E. L., Viveros, A., Freeman, A. and Zheng, Y. 2005. Two Xylella fastidiosa genotypes associated with almond leaf scorch disease on the same location in California. Phytopathology 95: 708-714. https://doi.org/10.1094/PHYTO-95-0708
  4. Firrao G. and Bazzi C. 1994. Specific identification of Xylella fastidiosa using the polymerase chain reaction. Phytopathol. Mediterr. 33: 90-92.
  5. Francis, M., Lin, H., Rosa, J. C.-L, Doddapaneni, H. and Civerolo, E. L. 2006. Genome-based PCR primers for specific and sensitive detection and quantification of Xylella fastidiosa. Eur. J. Plant Pathol. 115: 203. https://doi.org/10.1007/s10658-006-9009-4
  6. Fukuta, S., Iida, T., Mizukami, Y., Ishida, A., Ueda, J., Kanbe, M. et al. 2003. Detection of Japanese yam mosaic virus by RT-LAMP. Arch. Virol. 148: 1713-1720. https://doi.org/10.1007/s00705-003-0134-5
  7. Goto, M., Honda, E., Ogura, A., Nomoto, A. and Hanaki, K.-I. 2009. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 46: 167-172. https://doi.org/10.2144/000113072
  8. Hopkins, D. L. and Purcell, A. H. 2002. Xylella fastidiosa: cause of Pierce's disease of grapevine and other emergent diseases. Plant Dis. 86: 1056-1066. https://doi.org/10.1094/PDIS.2002.86.10.1056
  9. Huang, Q. 2009. Specific detection and identification of Xylella fastidiosa strains causing oleander leaf scorch using polymerase chain reaction. Curr. Microbiol. 58: 393-398. https://doi.org/10.1007/s00284-008-9324-4
  10. Huang, Q., Bentz, J. and Sherald, J. L. 2006. Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J. Plant Pathol. 88: 77-81.
  11. Huang, Q. and Sherald, J. L. 2004. Isolation and phylogenetic analysis of Xylella fastidiosa from its invasive alternative host, porcelain berry. Curr. Microbiol. 48: 73-76. https://doi.org/10.1007/s00284-003-4109-2
  12. Leu, L. S. 1993. Isolation, cultivation, and pathogenicity of Xylella fastidiosa, the causal bacterium of pear leaf scorch disease in Taiwan. Plant Dis. 77: 642-646. https://doi.org/10.1094/PD-77-0642
  13. Minsavage, G. V., Thompson, C. M., Hopkins, D. L., Leite, R. M. V. B. C. and Stall, R. E. 1994. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84: 456-461. https://doi.org/10.1094/Phyto-84-456
  14. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: e63. https://doi.org/10.1093/nar/28.12.e63
  15. Pooler, M. R. and Hartung, J. S. 1995. Genetic relationships among strains of Xylella fastidiosa from RAPD-PCR data. Curr. Microbiol. 31: 134-137. https://doi.org/10.1007/BF00294290
  16. Purcell, A. H. 1997. Xylella fastidiosa, a regional problem or global threat? J. Plant Pathol. 79: 99-105.
  17. Rodrigues, J. L. M., Silva-Stenico, M. E., Gomes, J. E., Lopes, J. R. S. and Tsai, S. M. 2003. Detection and diversity assessment of Xylella fastidiosa in field-collected plant and insect samples by using 16S rRNA and gyrB sequences. Appl. Environ. Microbiol. 69: 4249-4255. https://doi.org/10.1128/AEM.69.7.4249-4255.2003
  18. Schaad, N. W., Opgenorth, D. and Gaush, P. 2002. Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce's disease of grape in early season asymptomatic vines. Phytopathology 92: 721-728. https://doi.org/10.1094/PHYTO.2002.92.7.721
  19. Tomlinson, J. and Boonham, N. 2008. Potential of LAMP for detection of plant pathogens. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3: 66.
  20. Wells, J. M., Raju, B. C., Hung, H.-Y., Weisburg, W. G., Mandelco-Paul, L. and Brenner, D. J. 1987. Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. J. Syst. Bacteriol. 37: 136-143. https://doi.org/10.1099/00207713-37-2-136