• Title/Summary/Keyword: Xylella fastidiosa

Search Result 9, Processing Time 0.023 seconds

Development of Diagnostic Technology of Xylella fastidiosa Using Loop-Mediated Isothermal Amplification and PCR Methods

  • Kim, Suyoung;Park, Yujin;Kim, Gidon
    • Research in Plant Disease
    • /
    • v.27 no.1
    • /
    • pp.38-44
    • /
    • 2021
  • Xylella fastidiosa is the most damaging pathogen in many parts of the world. To increase diagnostic capability of X. fastidiosa in the field, the loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR) assay were developed to mqsA gene of citrate-synthase (XF 1535) X. fastidiosa and evaluated for specificity and sensitivity. Both assays were more robust than current published tests for detection of X. fastidiosa when screened against 16 isolates representing the four major subgroups of the bacterium from a range of host species. No cross reaction with DNA from healthy hosts or other species of bacteria has been observed. The LAMP and PCR assays could detect 10-4 pmol and 100 copies of the gene, respectively. Hydroxynaphthol blue was evaluated as an endpoint detection method for LAMP. There was a significant color shift that signaled the existence of the bacterium when at least 100 copies of the target template were present.

Diversity Evaluation of Xylella fastidiosa from Infected Olive Trees in Apulia (Southern Italy)

  • Mang, Stefania M.;Frisullo, Salvatore;Elshafie, Hazem S.;Camele, Ippolito
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • Olive culture is very important in the Mediterranean Basin. A severe outbreak of Olive Quick Decline Syndrome (OQDS) caused by Xylella fastidiosa infection was first noticed in 2013 on olive trees in the southern part of Apulia region (Lecce province, southern Italy). Studies were carried out for detection and diversity evaluation of the Apulian strain of Xylella fastidiosa. The presence of the pathogen in olive samples was detected by PCR amplifying the 16S rDNA, gyrase B subunit (gyrB) and HL hypothetical protein genes and single nucleotide polymorphisms (SNPs) assessment was performed to genotype X. fastidiosa. Twelve SNPs were recorded over gyrB and six SNPs were found for HL gene. Less variations were detected on 16S rDNA gene. Only gyrB and HL provided sufficient information for dividing the Apulian X. fastidiosa olive strains into subspecies. Using HL nucleotide sequences was possible to separate X. fastidiosa into subspecies pauca and fastidiosa. Whereas, nucleotide variation present on gyrB gene allowed separation of X. fastidiosa subsp. pauca from the other subspecies multiplex and fastidiosa. The X. fastidiosa strain from Apulia region was included into the subspecies pauca based on three genes phylogenetic analyses.

The Endophyte Curtobacterium flaccumfaciens Reduces Symptoms Caused by Xylella fastidiosa in Catharanthus roseus

  • Lacava, Paulo Teixeira;Li, Wenbin;Araujo, Welington Luiz;Azevedo, Joao Lucio;Hartung, John Stephen
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.388-393
    • /
    • 2007
  • Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be studied.

Control of Pierce's Disease through Degradation of Xanthan Gum

  • Lee, Seung-Don;Donald A. Cooksey
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • The diseases caused by Xylella fastidiosa are associated with aggregation of the bacteria m xylem vessels, formation of a gummy matrix and subsequent blockage of water uptake. In the closely related pathogen, Xanthomonas campestris, xanthan gum is known to be an important virulence factor, probably contributing to bacterial adhesion, aggregation and plugging of xylem. Xanthan gum, produced by X. campestris, is an extra-cellular polysaccharide consisting of a cellulose backbone ($\bate$-1,4-linked D-glucose) with trisaccharide side chains composed of mannose, glucuronic acid and mannose attached to alternate glucose residues in the backbone. We had constructed a mutant of X. campestris lacking gumI gene that is responsible for adding the terminal mannose for producing modified xanthan gum which is similar to xanthan gum fromX. fastidiosa. The modified xanthan gum degrading endgphytic bacterium Acineto-bacter johnsonii GX123 isolated from the oleander infected with leaf scorch disease.

Xylella fastidiosa in Europe: From the Introduction to the Current Status

  • Vojislav, Trkulja;Andrija, Tomic;Renata, Ilicic;Milos, Nozinic;Tatjana Popovic, Milovanovic
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.551-571
    • /
    • 2022
  • Xylella fastidiosa is xylem-limited bacterium capable of infecting a wide range of host plants, resulting in Pierce's disease in grapevine, citrus variegated chlorosis, olive quick decline syndrome, peach phony disease, plum leaf scald, alfalfa dwarf, margin necrosis and leaf scorch affecting oleander, coffee, almond, pecan, mulberry, red maple, oak, and other types of cultivated and ornamental plants and forest trees. In the European Union, X. fastidiosa is listed as a quarantine organism. Since its first outbreak in the Apulia region of southern Italy in 2013 where it caused devastating disease on Olea europaea (called olive leaf scorch and quick decline), X. fastidiosa continued to spread and successfully established in some European countries (Corsica and PACA in France, Balearic Islands, Madrid and Comunitat Valenciana in Spain, and Porto in Portugal). The most recent data for Europe indicates that X. fastidiosa is present on 174 hosts, 25 of which were newly identified in 2021 (with further five hosts discovered in other parts of the world in the same year). From the six reported subspecies of X. fastidiosa worldwide, four have been recorded in European countries (fastidiosa, multiplex, pauca, and sandyi). Currently confirmed X. fastidiosa vector species are Philaenus spumarius, Neophilaenus campestris, and Philaenus italosignus, whereby only P. spumarius (which has been identified as the key vector in Apulia, Italy) is also present in Americas. X. fastidiosa control is currently based on pathogen-free propagation plant material, eradication, territory demarcation, and vector control, as well as use of resistant plant cultivars and bactericidal treatments.

Evaluation of resistance to Pierce's disease among grapevine cultivars by using the culture filtrates produced from Xylella fastidiosa (Xylella fastidiosa의 배양여액을 이용한 포도나무 피어스병 품종 저항성 검정)

  • Park, Myung Soo;Lu, Jiang;Yun, Hae Keun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.394-400
    • /
    • 2017
  • This study investigated whether culture filtrates produced by Xylella fastidiosa can be used to determine the varietal susceptibility to Pierce's disease in grapevines (Vitis spp.) as a substitute for pathogen inoculation or field screening. A bioassay of grape leaves with culture filtrates from the pathogen showed that their phytotoxicities were active and host-selective. Ethyl acetate extracts from them also showed toxicities and host selectivity in both bunches of grapes and muscadine grapes. The sensitive range of plants to the culture filtrates and their ethyl acetate extracts was consistent with the host range of the Pierce's disease pathogen. Susceptible cultivars are sensitive to even highly diluted culture filtrates, while resistant cultivars were not affected even at their original culture filtrates. Susceptible cultivars were more sensitive to the undiluted culture filtrate than were highly diluted culture filtrates, and the younger leaves were the most sensitive to the culture filtrates in grapes. Although some European grape cultivars showed moderately susceptibility in this study, the determination of varietal resistance to Pierce's disease by the treatment of culture filtrates of pathogens could provide valuable information for the preliminary selection of genetic resources and seedlings from hybridization in a disease resistant grape breeding program.

Evaluation of Endophytic Colonization of Citrus sinensis and Catharanthus roseus Seedlings by Endophytic Bacteria

  • Lacava Paulo Teixeira;Araujo Welington Luiz;Azevedo Joao Lucio
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.11-14
    • /
    • 2007
  • Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis(CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus rose us using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

Cellular Responses of the TNT-degrading Bacterium, Stenotrophomonas sp. OK-5 to Explosive 2,4,6-Trinitrotoluene (TNT) (폭약 2,4,6-Trinitrotoluene에 노출된 분해세균 Stenotrophomonas sp. OK-5의 세포반응)

  • 장효원;송승열;김승일;강형일;오계헌*
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.247-253
    • /
    • 2002
  • The cellular responses of TNT-degrading bacterium, Stenotrophomonas sp. OK-5 to explosive 2,4,6-trini-trotoluene (TNT) as an environmental contaminant were examined. Survival of the strain OK-5 with time in the presence of different concentrations of TNT under sublethal conditions was monitored, and viable counts paralleled the production of the stress shock proteins in this bacterium. Total cellular fatty acids analysis showed that strain OK-5 produced or disappeared several different kinds of lipids when grown on TNT media than when grown on TSA. Under scanning electron microscope, the cells treated with 0.5 mM TNT for 12 hrs showed irregular rod shapes with wrinkled surfaces. Analyses of SDS-PAGE and Western blot using anti-DnaK and anti-GroEL revealed that several stress shock proteins including 70 kDa DnaK and 60 kDa GroEL in strain OK-5 were newly synthesized at different TNT concentrations in exponentially growing cultures. 2-D PAGE of soluble protein fractions from the culture of OK-5 exposed to TNT demonstrated that approximately 300 spots were observed on the silver stained gel ranging from pH 3 to pH 10. Among them, 10 spots significantly induced and expressed in response to TNT were selected and analyzed. As the result of internal amino acid sequencing with ESI-Q TOF, two proteins, spot #1 and spot #10 were assigned the DnaK protein XF2340 of Xylella fastidiosa and stress-induced protein of Mesorhizobium loti, respectively.

Characterization of Xanthomonas axonopodis pv. glycines plasmids

  • Park, Sejung;Kim, Jung-Gun;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.135.2-136
    • /
    • 2003
  • To characterize plasmids in Xanthomonu axonopodis pv. glycines, we isolated plasmids pAG1 from the strain AG1 and pXAG81 and PXAG82 from the strain Bra, respectively, and sequenced three plasmids. The size of plasmids, pAG1, pXAG81, and pXAG82 was 15,149-base pairs (bp), 26,727-bp, and 1,496-bp, respectively Fifteen and twenty six possible open reading frames (ORFs) were present in pAG1 and pXAG81, respectively. Only one ORF homologous to a rep gene of Xylella fastidiosa was present in pXAG82. pAG1 contained genes homologous to avrBs3, tnpA, tnpR, repA, htrA, three parA genes, M.XmaI, R.XmaI, and six hypothetical proteins. pXAG81 contained genes homologous to avrBs3, tnpA, tnpR, repA, htrA, two parA genes, pemI, pemK, mobA, mobB, mobC, mobD, mobE, trwB, traF, traH, ISxac2, and eleven hypothetical proteins. Based on DNA sequence analysis, we presume that pXAG81 is a conjugal plasmid. Interestingly, we found 0.5-kb truncated avirulence gene similar to aurXacE3 on the right border of avrBs3 homolgs of pAG1 and pXAG81. Two hundred twenty five isolates were analyzed to find aurBS3 or tra gene homologs by Southern hybridization. The numbers of avrBs3 homolog varied from 3 in AG1 to 8 in AG166. Two hundred seventeen isolates appeared to can conjugative plasmids (pXAG81 type), and thirty eight isolates appeared to carry non-conjugative plamids (pAGl type). This indicated that aurBs3 gene homologs might be spread by conjugation in X. axonopodis pv. glycines.

  • PDF