DOI QR코드

DOI QR Code

Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane

  • Yoon, Ju-Yeon (Virology Unit, Division of Horticultural and Herbal Crop Environment, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Palukaitis, Peter (Department of Horticulture Sciences, Seoul Women's University)
  • Received : 2021.03.12
  • Accepted : 2021.03.14
  • Published : 2021.04.01

Abstract

The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.

Keywords

References

  1. Baek, E., Yoon, J.-Y. and Palukaitis, P. 2017. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco. Virology 510:29-39. https://doi.org/10.1016/j.virol.2017.06.029
  2. Canto, T., Cillo, F. and Palukaitis, P. 2002. Generation of siRNAs by T-DNA sequences does not require active transcription or homology to sequences in the plant. Mol. Plant-Microbe Interact. 15:1137-1146. https://doi.org/10.1094/MPMI.2002.15.11.1137
  3. Canto, T. and Palukaitis, P. 2002. Novel N gene-associated, temperature-independent resistance to the movement of tobacco mosaic virus vectors neutralized by a cucumber mosaic virus RNA1 transgene. J. Virol. 76:12908-12916. https://doi.org/10.1128/JVI.76.24.12908-12916.2002
  4. Canto, T., Uhrig, J. F., Swanson, M., Wright, K. M. and MacFarlane, S. A. 2006. Translocation of tomato bushy stunt virus p19 protein into the nucleus by ALY proteins compromises its silencing suppressor activity. J. Virol. 80:9064-9072. https://doi.org/10.1128/JVI.00953-06
  5. Carr, J. P., Donnelly, R., Tungadi, T., Murphy, A. M., Jiang, S., Bravo-Cazar, A., Yoon, J.-Y., Cunniffe, N. J., Glover, B. J. and Gilligan, C. A. 2018a. Viral manipulation of plant stress responses and host interactions with insects. Adv. Virus Res. 102:177-197. https://doi.org/10.1016/bs.aivir.2018.06.004
  6. Carr, J. P. and Murphy, A. M. 2019. Chapter 12. Suppression of plant defense. In: Cucumber mosaic virus, eds. by P. Palukaitis and F. Garcia-Arenal, pp. 133-144. APS Press, St. Paul, MN, USA.
  7. Carr, J. P., Murphy, A. M., Tungadi, T. and Yoon, J.-Y. 2018b. Plant defense signals: players and pawns in plant-virus-vector interactions. Plant Sci. 279:87-95. https://doi.org/10.1016/j.plantsci.2018.04.011
  8. Chaturvedi, S. and Rao, A. L. N. 2016. A shift in plant proteome profile for a bromodomain containing RNA binding protein (BRP1) in plants infected with cucumber mosaic virus and its satellite RNA. J. Proteomics 131:1-7. https://doi.org/10.1016/j.jprot.2015.09.030
  9. Chaturvedi, S., Seo, J.-K. and Rao, A. L. N. 2016. Functionality of host proteins in cucumber mosaic virus replication: GAPDH is obligatory to promote interactions between replicationassociated proteins. Virology 494:47-55. https://doi.org/10.1016/j.virol.2016.04.001
  10. Cillo, F., Roberts, I. M. and Palukaitis, P. 2002. In situ localization and tissue distribution of the replication-associated proteins of cucumber mosaic virus in tobacco and cucumber. J. Virol. 76:10654-10664. https://doi.org/10.1128/JVI.76.21.10654-10664.2002
  11. Csorba, T., Contra, L. and Burgyan, J. 2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479-480:85-103. https://doi.org/10.1016/j.virol.2015.02.028
  12. Fischer, U. and Droge-Laser, W. 2004. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol. Plant-Microbe Interact. 17:1162-1171. https://doi.org/10.1094/MPMI.2004.17.10.1162
  13. Gehl, C., Waadt, R., Kudla, J., Mendel, R.-R. and Hansch, R. 2009. New GATEWAY vectors for high throughput analysis of protein-protein interactions by bimolecular fluorescence complementation. Mol. Plant 2:1051-1058. https://doi.org/10.1093/mp/ssp040
  14. Guo, Z., Li, Y. and Ding, S.-W. 2019. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19:31-44. https://doi.org/10.1038/s41577-018-0071-x
  15. Hao, D., Yamasaki, K., Sarai, A. and Ohme-Tagaki, M. 2002. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41:4202-4208. https://doi.org/10.1021/bi015979v
  16. Hu, Z., Zhang, T., Yao, M., Feng, Z., Miriam, K., Wu, J., Zhou, X. and Tao, X. 2012. The 2a protein of cucumber mosaic virus induces a hypersensitive response in cowpea independently of its replicase activity. Virus Res. 170:169-173. https://doi.org/10.1016/j.virusres.2012.10.007
  17. Huh, S. U., Kim, M. J., Ham, B.-K. and Paek, K.-H. 2011. A zinc finger protein Tsip1 controls cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant. New Phytol. 191:746-762. https://doi.org/10.1111/j.1469-8137.2011.03717.x
  18. Jin, Y., Zhao, J.-H. and Guo, H.-S. 2021. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr. Opin. Virol. 46:65-72. https://doi.org/10.1016/j.coviro.2020.12.001
  19. Kang, W.-H., Seo, J.-K., Chung, B. N., Kim, K.-H. and Kang, B.-C. 2012. Helicase domain encoded by cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS ONE 7:e43136. https://doi.org/10.1371/journal.pone.0043136
  20. Karasawa, A., Okada, I., Akashi, K., Chida, Y., Hase, S., Nakazawa-Nasu, Y., Ito, A. and Ehara, Y. 1999. One amino acid change in cucumber mosaic virus RNA polymerase determines virulent/avirulent phenotypes on cowpea. Phytopathology 89:1186-1192. https://doi.org/10.1094/PHYTO.1999.89.12.1186
  21. Kim, C.-H. and Palukaitis, P. 1997. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects accumulation in single cells. EMBO J. 16:4060-4068. https://doi.org/10.1093/emboj/16.13.4060
  22. Kim, M. J., Ham, B.-K., Kim, H. R., Lee, I.-J., Kim, Y. J., Ryu, K. H., Park, Y. I. and Paek, K.-H. 2005. In vitro and in planta interaction evidence between Nicotiana tabacum thaumatin-like protein 1 (TLP1) and cucumber mosaic virus proteins. Plant Mol. Biol. 59:981-994. https://doi.org/10.1007/s11103-005-2619-y
  23. Kim, M. J., Ham, B.-K. and Paek, K.-H. 2006a. Novel protein kinase interacts with the cucumber mosaic virus 1a methyltransferase domain. Biochem. Biophys. Res. Commun. 340:228-235. https://doi.org/10.1016/j.bbrc.2005.11.178
  24. Kim, M. J., Huh, S. U., Ham, B.-K. and Paek, K.-H. 2008. A novel methyltransferase methylates cucumber mosaic virus 1a protein and promotes systemic spread. J. Virol. 82:4823-4833. https://doi.org/10.1128/JVI.02518-07
  25. Kim, M. J., Kim, H. R. and Paek, K.-H. 2006b. Arabidopsis tonoplast proteins TIP1 and TIP2 interact with the cucumber mosaic virus 1a replication protein. J. Gen. Virol. 87:3425-3431. https://doi.org/10.1099/vir.0.82252-0
  26. Kim, S. H., MacFarlane, S., Kalinina, N. O., Rakitina D. V., Ryabov, E. V., Gillespie, T., Haupt, S., Brown, J. W. S. and Taliansky, M. 2007. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. U. S. A. 104:11115-11120. https://doi.org/10.1073/pnas.0704632104
  27. Kim, S. H., Palukaitis, P. and Park, Y. I. 2002. Phosphorylation of cucumber mosaic virus RNA polymerase 2a protein inhibits formation of replicase complex. EMBO J. 21:2292-2300. https://doi.org/10.1093/emboj/21.9.2292
  28. Kong, J., Wei, M., Li, G., Lei, R., Qiu, Y., Wang, C., Li, Z.-H. and Zhu, S. 2018. The cucumber mosaic virus movement protein suppresses PAMP-triggered immune responses in Arabidopsis and tobacco. Biochem. Biophys. Res. Commun. 498:395-401. https://doi.org/10.1016/j.bbrc.2018.01.072
  29. Lemon, B. and Tjian, R. 2000. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14:2551-2569. https://doi.org/10.1101/gad.831000
  30. Lu, Y. and Tsuda, K. 2021. Intimate association of PRR- and NLR-mediated signaling in plant immunity. Mol. Plant-Microbe Interact. 34:3-14. https://doi.org/10.1094/MPMI-08-20-0239-IA
  31. Nabori, T. and Tsuda, K. 2019. The plant system in heterogeneous environments. Curr. Opin. Plant Biol. 50:58-66. https://doi.org/10.1016/j.pbi.2019.02.003
  32. Nakahara, K. S. and Masuta, C. 2014. Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr. Opin. Plant Biol. 20:88-95. https://doi.org/10.1016/j.pbi.2014.05.004
  33. Palukaitis, P. 2019. Chapter 10. Genome structure and expression. In: Cucumber mosaic virus, eds. by P. Palukaitis and F. Garcia-Arenal, pp. 113-121. APS Press, St. Paul, MN, USA.
  34. Palukaitis, P. and Yoon, J.-Y. 2020. R gene mediated defense against viruses. Curr. Opin. Virol 45:1-7. https://doi.org/10.1016/j.coviro.2020.04.001
  35. Peart, J. R., Cook, G., Feys, B. J., Parker, J. E. and Baulcombe, D. C. 2002. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29:569-579. https://doi.org/10.1046/j.1365-313X.2002.029005569.x
  36. Sierro, N., Battey, J. N. D., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C. and Ivanov, N. V. 2014. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 5:3833. https://doi.org/10.1038/ncomms4833
  37. Takahashi, H., Goto, N. and Ehara, Y. 1994. Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsus thaliana. Plant J. 6:369-377. https://doi.org/10.1046/j.1365-313X.1994.06030369.x
  38. Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, Y., Hase, S., Ikegami, M., Ehara, Y. and Dinesh-Kumar, S. P. 2002. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32:655-667. https://doi.org/10.1046/j.1365-313X.2002.01453.x
  39. Takahashi, H., Suzuki, M., Natsuaki, K., Shigyo, T., Hino, K., Teraoka, T., Hosokawa, D. and Ehara, Y. 2001. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42:340-347. https://doi.org/10.1093/pcp/pce039
  40. Tungadi, T., Donnelly, R., Qing, L., Iqbal, J., Murphy, A. M., Pate, A. E., Cunniffe, N. J. and Carr, J. P. 2020. Cucumber mosaic virus 2b proteins inhibit virus-induced aphid resistance in tobacco. Mol. Plant Pathol. 21:250-257. https://doi.org/10.1111/mpp.12892
  41. Waadt, R., Schmidt, L. K., Lohse, M., Hashimoto, K., Bock, R. and Kudla, J. 2008. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J. 56:505-516. https://doi.org/10.1111/j.1365-313X.2008.03612.x
  42. Watt, L. G., Crawshaw, S., Rhee, S.-J., Murphy, A. M., Canto, T. and Carr, J. P. 2020. The cucumber mosaic virus 1a protein regulates interactions between the 2b protein and ARGONAUTE 1 while maintaining the silencing suppressor activity of the 2b protein. PLoS Pathog. 16:e1009125. https://doi.org/10.1371/journal.ppat.1009125
  43. Westwood, J. H., Groen, S. C., Du, Z., Murphy, A. M., Anggoro, D. T., Tungadi, T., Luang-In, V., Lewsey, M. G., Rossiter, J. T., Powell, G., Smith, A. G. and Carr, J. P. 2013. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE 8:e83066. https://doi.org/10.1371/journal.pone.0083066
  44. Westwood, J. H., Lewsey, M. G., Murphy, A. M., Tungadi, T., Bates, A., Gilligan, C. A. and Carr, J. P. 2014. Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant-aphid interactions. J. Gen. Virol. 95:733-739. https://doi.org/10.1099/vir.0.060624-0
  45. Yoda, H., Ogawa, M., Yamaguchi, Y., Koizumi, N., Kusano, T. and Sano, H. 2002. Identification of early-response genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants. Mol. Genet. Genomics 267:154-161. https://doi.org/10.1007/s00438-002-0651-z
  46. Yoon, J.-Y., Han, K.-S., Park, H.-Y. and Choi, S.-K. 2012. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase. Virus Genes 44:495-504. https://doi.org/10.1007/s11262-012-0725-x
  47. Ziebell, H., Murphy, A. M., Groen, S. C., Tungadi, T., Westwood, J. H., Lewsey, M. G., Moulin, M., Kleczkowski, A., Smith, A. G., Stevens, M., Powell, G. and Carr, J. P. 2011. Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco. Sci. Rep. 1:187. https://doi.org/10.1038/srep00187
  48. Zvereva, A. S. and Pooggin, M. M. 2012. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578-2597. https://doi.org/10.3390/v4112578