참고문헌
- Amin, F.R., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G. and Chen, C. (2017), "Pretreatment methods of lignocellulosic biomass for anaerobic digestion", AMB Express, 7(1), 1-12. https://doi.org/10.1186/s13568-017-0375-4.
- Anunputtikul, W. and Rodtong, S. (2004), "Laboratory scale experiments for biogas production from Euphorbiaceae tubers", Proceedings of the Joint International Conference on "Sustainable Energy and Environment (SEE), Hua Hin, Thailand, December.
- Bayitse, R.N.L.G., Selormey, G., Oduro, W.O., Aggey, M., Mensah, B., Gustavsson, M. and Bjerre, A.B. (2014), "Anaerobic co-digestion of cassava peels and manure: A technological approach for biogas generation and bio-fertilizer production", J. Appl. Sci. Technol., 19(1/2), 10-17.
- Bjornsson, L., Murto, M. and Mattiasson, B. (2000), "Evaluation of parameters for monitoring an anaerobic co-digestion process", Appl. Microbiol. Biotechnol., 54(6), 844-849. https://doi.org/10.1007/s002530000471.
- Demirel, B. and Yenigun, O. (2004), "Anaerobic acidogenesis of dairy wastewater: The effects of variations in hydraulic retention time with no pH control", J. Chem. Technol. Biotechnol., 79(7), 755-760. https://doi.org/10.1002/JCTB.1052.
- Deublein, D. and Steinhauser, A. (2011), Biogas from Waste and Renewable Resources: An Introduction, Wiley.
- Dioha, I.J., Ikeme, C.H., Nafi'u, T., Soba, N.I. and Yusuf, M.B.S. (2013), "Effect of carbon to nitrogen ratio on biogas production", Int. Res. J. Nat. Sci., 1(3), 1-10. https://doi.org/10.5296/ijssr.v1i1.3588
- Franke-Whittle, I.H., Walter, A., Ebner, C. and Insam, H. (2014), "Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities", Waste Manage., 34(11), 2080-2089. https://doi.org/10.1016/J.WASMAN.2014.07.020.
- Hagos, K., Zong, J., Li, D., Liu, C. and Lu, X. (2017), "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives", Renew. Sust. Energ. Rev., 76, 1485-1496. https://doi.org/10.1016/j.rser.2016.11.184.
- Jekayinfa, S. and V. S. (2013), "Laboratory scale preparation of biogas from Euphorbiaceae tubers, Euphorbiaceae peels, and palm kernel oil residues", Energy Sources Part A Recovery Utilization Environ. Effects, 35(21), 2022-2032. https://doi.org/10.1080/15567036.2010.532190
- Kamaruddin, M.A., Yusoff, M.S., Aziz, H.A. and Hung, Y.T. (2015), "Sustainable treatment of landfill leachate", Appl. Water Sci., 5(2), 113-126. https://doi.org/10.1007/s13201-014-0177-7.
- Kamaruddin, M.A., Yusoff, M.S., Rui, L.M., Isa, A.M., Zawawi, M.H. and Alrozi, R. (2017), "An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives", Environ. Sci. Pollut. Res., 24(35), 26988-27020. https://doi.org/10.1007/s11356-017-0303-9.
- Kim, J., Park, C., Kim, T.H., Lee, M., Kim, S., Kim, S.W. and Lee, J. (2003), "Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge", J. Biosci. Bioeng., 95(3), 271-275. https://doi.org/10.1016/s1389-1723(03)80028-2.
- Komemoto, K., Lim, Y.G., Nagao, N., Onoue, Y., Niwa, C. and Toda, T. (2009), "Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste", Waste Manage., 29(12), 2950-2955. https://doi.org/10.1016/j.wasman.2009.07.011.
- Kwietniewska, E. and Tys, J. (2014), "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation", Renew. Sust. Energ. Rev., 34, 491-500. https://doi.org/10.1016/j.rser.2014.03.041.
- Maharaj, I. and Elefsiniotis, P. (2001), "The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters", Bioresource Technol., 76(3), 191-197. https://doi.org/10.1016/S0960-8524(00)00128-0.
- Mao, C., Feng, Y., Wang, X. and Ren, G. (2015), "Review on research achievements of biogas from anaerobic digestion", Renew. Sust. Energ. Rev., 45, 540-555. https://doi.org/10.1016/j.rser.2015.02.032.
- Montanes, R., Solera, R. and Perez, M. (2015), "Anaerobic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of temperature", Bioresource Technol., 180, 177-184. https://doi.org/10.1016/j.biortech.2014.12.056.
- Okudoh, V., Trois, C., Workneh, T. and Schmidt, S. (2014), "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review", Renew. Sust. Energ. Rev., 39, 1035-1052. https://doi.org/10.1016/J.RSER.2014.07.142.
- Oslaj, M., Mursec, B. and Vindis, P. (2010), "Biogas production from maize hybrids", Biomass Bioenergy, 34(11), 1538-1545. https://doi.org/10.1016/j.biombioe.2010.04.016.
- Panichnumsin, P., Nopharatana, A., Ahring, B. and Chaiprasert, P. (2010), "Production of methane by co-digestion of cassava pulp with various concentrations of pig manure", Biomass Bioenergy, 34(8), 1117-1124. https://doi.org/10.1016/j.biombioe.2010.02.018.
- Sawatdeenarunat, C., Surendra, K.C., Takara, D., Oechsner, H. and Khanal, S.K. (2015), "Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities", Bioresource Technol., 178, 178-186. https://doi.org/10.1016/j.biortech.2014.09.103
- Singhal, Y., Bansal, S.K. and Singh, R. (2012), "Evaluation of biogas production from solid waste using pretreatment method in anaerobic condition", Int. J. Emerg. Sci., 2(3), 405-414.
- Tan, C.S., Maragatham, K. and Leong, Y.P. (2013), "Electricity energy outlook in Malaysia", IOP Conf. Ser. Earth Environ. Sci., 16(1), 012126. https://doi.org/10.1088/1755-1315/16/1/012126.
- Wang, Y., Zhang, Y., Wang, J. and Meng, L. (2009), "Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria", Biomass Bioenergy, 33(5), 848-853. https://doi.org/10.1016/j.biombioe.2009.01.007.
- Ward, A.J., Hobbs, P.J., Holliman, P.J. and Jones, D.L. (2008), "Optimisation of the anaerobic digestion of agricultural resources", Bioresource Technol., 99(17), 7928-7940. https://doi.org/10.1016/j.biortech.2008.02.044.
- Weiland, P. (2010), "Biogas production: Current state and perspectives", Appl. Microbiol. Biotechnol., 85(4), 849-860. https://doi.org/10.1007/s00253-009-2246-7.