참고문헌
- Choi J, Choi BK, Kim JS et al (2016) Picroside II attenuates airway inflammation by downregulating the transcription factor GATA3 and Th2-related cytokines in a mouse model of HDM-induced allergic asthma. PLoS One 11, e0167098 https://doi.org/10.1371/journal.pone.0167098
- Gregory LG and Lloyd CM (2011) Orchestrating house dust mite-associated allergy in the lung. Trends Immunol 32, 402-411 https://doi.org/10.1016/j.it.2011.06.006
- de Boer JD, Yang J, van den Boogaard FE et al (2014) Mast cell-deficient kit mice develop house dust mite-induced lung inflammation despite impaired eosinophil recruitment. J Innate Immun 6, 219-226 https://doi.org/10.1159/000354984
- Johnson JR, Wiley RE, Fattouh R et al (2004) Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 169, 378-385 https://doi.org/10.1164/rccm.200308-1094OC
- Ulrik CS and Backer V (1999) Markers of impaired growth of pulmonary function in children and adolescents. Am J Respir Crit Care Med 160, 40-44 https://doi.org/10.1164/ajrccm.160.1.9806059
- Platts-Mills TAE, de Weck AL, Aalberse RC et al (1989) Dust mite allergens and asthma-a worldwide problem. J Allergy Clin Immunol 83, 416-427 https://doi.org/10.1016/0091-6749(89)90128-0
- Raemdonck K, Baker K, Dale N et al (2016) CD4+ and CD8+ T cells play a central role in a HDM driven model of allergic asthma. Respir Res 17, 45 https://doi.org/10.1186/s12931-016-0359-y
- Cho KJ, Seo JM, Shin Y et al (2010) Blockade of airway inflammation and hyperresponsiveness by inhibition of BLT2, a low-affinity leukotriene B4 receptor. Am J Respir Cell Mol Biol 42, 294-303 https://doi.org/10.1165/rcmb.2008-0445OC
- Tager AM, Dufour JH, Goodarzi K, Bercury SD, von Andrian UH and Luster AD (2000) BLTR mediates leukotriene B4-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J Exp Med 192, 439-446 https://doi.org/10.1084/jem.192.3.439
- Gelfand EW and Dakhama A (2006) CD8+ T lymphocytes and leukotriene B4: novel interactions in the persistence and progression of asthma. J Allergy Clin Immunol 117, 577-582 https://doi.org/10.1016/j.jaci.2005.12.1340
- Silbaugh SA, Stengel PW, Williams GD, Herron DK, Gallagher P and Baker SR (1987) Effects of leukotriene B4 inhalation. Airway sensitization and lung granulocyte infiltration in the guinea pig. Am Rev Respir Dis 136, 930-934 https://doi.org/10.1164/ajrccm/136.4.930
- Goodarzi K, Goodarzi M, Tager AM, Luster AD and von Andrian UH (2003) Leukotriene B4and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4, 965-973 https://doi.org/10.1038/ni972
- Taube C, Miyahara N, Ott V et al (2006) The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol 176, 3157-3164 https://doi.org/10.4049/jimmunol.176.5.3157
- Tager AM and Luster AD (2003) BLT1 and BLT2: the leukotriene B4 receptors. Prostaglandins Leukot Essent Fatty Acids 69, 123-134 https://doi.org/10.1016/S0952-3278(03)00073-5
- Jang JH, Wei JD, Kim M, Kim JY, Cho AE and Kim JH (2017) Leukotriene B4 receptor 2 gene polymorphism (rs1950504, Asp196Gly) leads to enhanced cell motility under low-dose ligand stimulation. Exp Mol Med 49, e402 https://doi.org/10.1038/emm.2017.192
- Lundeen KA, Sun B, Karlsson L and Fourie AM (2006) Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J Immunol 177, 3439-3447 https://doi.org/10.4049/jimmunol.177.5.3439
- Kim GY, Lee JW, Cho SH, Seo JM and Kim JH (2009) Role of the low-affinity leukotriene B4 receptor BLT2 in VEGF-induced angiogenesis. Arterioscler Thromb Vasc Biol 29, 915-920 https://doi.org/10.1161/ATVBAHA.109.185793
- Ro M, Lee AJ and Kim JH (2018) 5-/12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development. Allergy 73, 350-360 https://doi.org/10.1111/all.13294
- Cho KJ, Seo JM, Lee MG and Kim JH (2010) BLT2 Is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. J Immunol 185, 6329-6337 https://doi.org/10.4049/jimmunol.1001213
- Ro M, Kwon SY and Kim JH (2019) Leukotriene B4 receptors mediate the production of IL-17, thus contributing to neutrophil-dominant asthmatic airway inflammation. Allergy 74, 1797-1799 https://doi.org/10.1111/all.13789
- Lee AJ, Ro M, Cho KJ and Kim JH (2017) Lipopolysaccharide/TLR4 stimulates IL-13 production through a MyD88-BLT2-linked cascade in mast cells, potentially contributing to the allergic response. J Immunol 199, 409-417 https://doi.org/10.4049/jimmunol.1602062
- Reithofer M and Jahn-Schmid B (2017) Allergens with protease activity from house dust mites. Int J Mol Sci 18, 1368 https://doi.org/10.3390/ijms18071368
- Wang JY (2013) The innate immune response in house dust mite-induced allergic inflammation. Allergy Asthma Immunol Res 5, 68-74 https://doi.org/10.4168/aair.2013.5.2.68
- Lukacs NW (2001) Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol 1, 108-116 https://doi.org/10.1038/35100503
- Galli SJ, Tsai M and Piliponsky AM (2008) The development of allergic inflammation. Nature 454, 445-454 https://doi.org/10.1038/nature07204
- Kolmert J, Pineiro-Hermida S, Hamberg M et al (2018) Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat 137, 20-29 https://doi.org/10.1016/j.prostaglandins.2018.05.005
- Henkel FDR, Friedl A, Haid M et al (2019) House dust mite drives proinflammatory eicosanoid reprogramming and macrophage effector functions. Allergy 74, 1090-1101
- Cho KJ, Seo JM and Kim JH (2011) Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cells 32, 1-5 https://doi.org/10.1007/s10059-011-1021-7
- Kim C, Kim JY and Kim JH (2008) Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep 41, 555-559
- Lee AJ, Cho KJ and Kim JH (2015) MyD88-BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. Exp Mol Med 47, e156 https://doi.org/10.1038/emm.2015.8
- Elieh Ali Komi D and Bjermer L (2019) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56, 234-247 https://doi.org/10.1007/s12016-018-8720-1
- Yu CK and Chen CL (2003) Activation of mast cells is essential for development of house dust mite Dermatophagoides farinae-induced allergic airway inflammation in mice. J Immunol 171, 3808-3815 https://doi.org/10.4049/jimmunol.171.7.3808
- Schmit D, Le DD, Heck S et al (2017) Allergic airway inflammation induces migration of mast cell populations into the mouse airway. Cell Tissue Res 369, 331-340 https://doi.org/10.1007/s00441-017-2597-9
- Li S, Aliyeva M, Daphtary N et al (2014) Antigen-induced mast cell expansion and bronchoconstriction in a mouse model of asthma. Am J Physiol Lung Cell Mol Physiol 306, L196-206 https://doi.org/10.1152/ajplung.00055.2013
- Sibilano R, Frossi B and Pucillo CE (2014) Mast cell activation: a complex interplay of positive and negative signaling pathways. Eur J Immunol 44, 2558-2566 https://doi.org/10.1002/eji.201444546
- Waern I, Lundequist A, Pejler G and Wernersson S (2013) Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation. Mucosal Immunol 6, 911-920 https://doi.org/10.1038/mi.2012.129
- Lee AJ, Ro M and Kim JH (2016) Leukotriene B4 receptor 2 is critical for the synthesis of vascular endothelial growth factor in allergen-stimulated mast cells. J Immunol 197, 2069-2078 https://doi.org/10.4049/jimmunol.1502565
- Kwon SY, Ro M and Kim JH (2019) Mediatory roles of leukotriene B4 receptors in LPS-induced endotoxic shock. Sci Rep 9, 5936 https://doi.org/10.1038/s41598-019-42410-8
- Kujur W, Gurram RK, Haleem N, Maurya SK and Agrewala JN (2015) Caerulomycin A inhibits Th2 cell activity: a possible role in the management of asthma. Sci Rep 5, 15396 https://doi.org/10.1038/srep15396