DOI QR코드

DOI QR Code

Caulerpa okamurae ethanol extract improves the glucose metabolism and insulin sensitivity in vitro and in vivo

옥덩굴 에탄올 추출물의 당 대사 및 인슐린 민감성 개선효과

  • Park, Chul-Min (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University) ;
  • Thakuri, Laxmi Sen (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University) ;
  • Rhyu, Dong-Young (Department of Nutraceutical Resources and Institute of Korean Medicine Industry, Mokpo National University)
  • Received : 2021.02.19
  • Accepted : 2021.02.23
  • Published : 2021.03.31

Abstract

The aim of this study is to examine the effect of Caulerpa okamurae ethanol extract (COE) on glucose metabolism and insulin sensitivity as one of the drug targets for treatment of type2 diabetes. COE significantly inhibited protein tyrosine phosphatase (PTP1B) and dipeptidyl peptidase-IV (DPP-IV) enzyme activities in vitro assay. Also, COE significantly enhanced the glucose uptake and the expression of insulin receptor substrate-1 (IRS-1) and glucose transporter4 (GLUT4) proteins in 3T3-L1 adipocytes or zebrafish larvae compared with control. In dexamethasone-induced resistance model of L6 myotubes, the protein expression of insulin signaling and glucose uptake was effectively increased by the treatment of COE. In contrast, the elevated phosphorylation of IRS-1 Ser307 was normally suppressed by treatment of COE. However, COE had no effect on insulin secretion in pancreatic beta cells. Thus, our results suggest that COE improves the glucose metabolism and insulin sensitivity through the regulation of insulin signaling and GLUT4 protein in insulin's target cells and zebrafish larvae.

이 연구의 목적은 Caulerpa okamurae 에탄올 추출물(COE)이 제2형 당뇨병 치료의 약물 표적 중 하나인 당 대사 및 인슐린 민감성에 미치는 영향을 평가하는 것이다. COE는 in vitro 실험에서 단백질 티로신 포스타제 1B (PTP1B)와 디펩티딜 펩티데이즈-IV (DPP-IV) 효소 활성을 유의하게 억제시켰다. 또한, COE는 3T3-L1 지방세포와 제브라피쉬에서 당 흡수, 인슐린 수용체 기질(IRS-1) 및 당 수송체(GLUT4) 단백의 발현을 대조군에 비해 유의하게 향상시켰다. L6 근육세포의 덱사메타손(dexamethasone)으로 유도된 인슐린 저항성 모델에서도 COE는 인슐린 신호전달 및 당 흡수 단백의 발현을 효과적으로 증가시켰다. 더불어 인슐린 저항성 지표로 알려진 IRS-1 Ser307의 인산화 활성도 COE 첨가에 의해 유의하게 억제되었다. 그러나 COE는 췌장 베타세포의 인슐린 분비에는 아무런 영향을 미치지 않았다. 결론적으로 COE는 인슐린 표적세포와 제브라피쉬에서 인슐린 신호전달과 당 수송체 GLUT4 단백 발현의 조절을 통해 당 대사 및 인슐린 민감성을 개선시키는 것으로 밝혀졌다.

Keywords

References

  1. Oguntibeju OO (2019) Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 11(3): 45-63
  2. Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman Med J 27(4): 269-273 https://doi.org/10.5001/omj.2012.68
  3. Lee YS, Jun HS (2014) Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 63(1): 9-19 https://doi.org/10.1016/j.metabol.2013.09.010
  4. Park YS, Ahn SH, Park DJ, Kim HH (2014) Effects of metabolic surgery on glucose homeostasis in type 2 diabetes. J Metab Bariatr Surg 3(2): 25-32
  5. Cha BS, Park SE (2006) Insulin resistance and PPARγ. J Korean Diabetes Assoc 30(5): 317-323 https://doi.org/10.4093/jkda.2006.30.5.317
  6. Maratou E, Raptis SA (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93: S52-S59 https://doi.org/10.1016/S0168-8227(11)70014-6
  7. Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD (2011) Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13: 118-125
  8. Dey L, Attele AS, Yuan CS (2002) Alternative therapies for type 2 diabetes. Alternative Medicine Review 7(1): 45-58
  9. Hollander P (2007) Anti-diabetes and anti-obesity medications: effects on weight in people with diabetes. Diabetes Spectr 20(3): 159-165 https://doi.org/10.2337/diaspect.20.3.159
  10. Prabhakar PK, Doble M (2011) Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 17(8): 563-574 https://doi.org/10.1007/s11655-011-0810-3
  11. Choi CG, Hwang EK, Sohn GH (2000) Culture studies on the green alga, Caulerpa Okamurae I. growth and regeneration. J Aquaculture 13(3): 253-258
  12. Nguyen VT, Ueng JP, Tsai GJ (2011) Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J Food Sci 76(7): C950-C958 https://doi.org/10.1111/j.1750-3841.2011.02289.x
  13. Vanderlei ESO, Patoilo KKNR, Lima NA, Lima APS, Rodrigues JAG, Silva LMC, Lima MEP, Lima V, Benevides NMB (2010) Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int immunopharmacol 10(9): 1113-1118 https://doi.org/10.1016/j.intimp.2010.06.014
  14. Carneiro JG, Rodrigues JAG, de Sousa Oliveira Vanderlei E, Souza RB, Quindere ALG, Coura CO, de Araujo IWF, Chaves HV, Bezerra MM, Benevides NMB (2014) Peripheral Antinociception and Anti-Inflammatory Effects of Sulphated Polysaccharides from the Alga Caulerpa mexicana. Basic Clin Pharmacol Toxicol 115(4): 335-342 https://doi.org/10.1111/bcpt.12234
  15. Sharma BR, Kim HJ, Rhyu DY (2015) Caulerpa lentillifera extract ameliorates insulin resistance and regulates glucose metabolism in C57BL/KsJ-db/db mice via PI3K/AKT signaling pathway in myocytes. J Transl Med 13(1): 1-10 https://doi.org/10.1186/s12967-014-0365-0
  16. Sharma BR, Kim HJ, Kim MS, Park CM, Rhyu DY (2017) Caulerpa okamurae extract inhibits adipogenesis in 3T3-L1 adipocytes and prevents high-fat diet-induced obesity in C57BL/6 mice. Nutr Res 47: 44-52 https://doi.org/10.1016/j.nutres.2017.09.002
  17. Lee YS, Jun HS (2014) Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 63(1): 9-19 https://doi.org/10.1016/j.metabol.2013.09.010
  18. Gallwitz B (2019) Clinical use of DPP-4 inhibitors. Front Endocrinol. doi: 10.3389/fendo.2019.00389
  19. Kasuga M (2006) Insulin resistance and pancreatic β cell failure. J Clin Invest 116(7): 1756-1760 https://doi.org/10.1172/JCI29189
  20. Leibiger IB, Leibiger B, Berggren PO (2008) Insulin signaling in the pancreatic β-cell. Annu Rev Nutr 28: 233-251 https://doi.org/10.1146/annurev.nutr.28.061807.155530
  21. Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol. doi: 10.3389/fendo.2013.00037
  22. Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug discov today 12(9-10): 373-381 https://doi.org/10.1016/j.drudis.2007.03.011
  23. Sun J, Qu C, Wang Y, Huang H, Zhang M, Li H, Zhang Y, Wang Y, Zou W (2016) PTP1B, a potential target of type 2 diabetes mellitu. Mol Biol. doi: 10.3389/fnagi.2017.00007
  24. Vilsboll T, Holst JJ (2004) Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia 47(3): 357-366 https://doi.org/10.1007/s00125-004-1342-6
  25. Buchanan TA (2003) Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin Ther 25: B32-B46 https://doi.org/10.1016/S0149-2918(03)80241-2
  26. Hamm JK, Park BH, Farmer SR (2001) A role for C/EBPβ in regulating peroxisome proliferator-activated receptor γ activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 276(21): 18464-18471 https://doi.org/10.1074/jbc.M100797200
  27. Kim JB, Park JY (2002) Molecular insights into fat cell differentiation and functional roles of adipocytokines. Endocrinol Metab 17(1): 1-8
  28. Kim SH, Shin EJ, Hyun CK (2005) Enhancing effects of extracts of Phellodendri Cortex on glucose uptake in normal and insulin-resistant 3T3-L1 adipocytes. Kor J Pharmacogn 36(4): 291-298
  29. Tabassum N, Tai H, Jung DW, Williams DR (2015) Fishing for nature's hits: establishment of the zebrafish as a model for screening antidiabetic natural products. Evid Based Complement and Alternat Med doi:10.1155/2015/287847
  30. Zang L, Maddison LA, Chen W (2018) Zebrafish as a model for obesity and diabetes. Fron Cell Dev Biol 6: doi.org/10.3389/fcell.2018.00091
  31. Abdul-Ghani, MA, DeFronzo, RA (2010) Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010: 476279
  32. Czech, MP (2017) Insulin action and resistance in obesity and type 2 diabetes. Nat Med 23(7): 804 https://doi.org/10.1038/nm.4350
  33. Beale, EG (2013) Insulin signaling and insulin resistance. J Investig Med 61(1): 11-14 https://doi.org/10.2310/JIM.0b013e3182746f95
  34. Mo, Z, Li, L, Yu, H, Wu, Y, Li, H (2019) Coumarins ameliorate diabetogenic action of dexamethasone via Akt activation and AMPK signaling in skeletal muscle. J Pharmacol Sci 139(3): 151-157 https://doi.org/10.1016/j.jphs.2019.01.001