DOI QR코드

DOI QR Code

A Study on Real Time Fault Diagnosis and Health Estimation of Turbojet Engine through Gas Path Analysis

가스경로해석을 통한 터보제트엔진의 실시간 고장 진단 및 건전성 추정에 관한 연구

  • Han, Dong-Ju (Department of Aviation Maintenance Engineering, Kukdong University)
  • Received : 2020.10.19
  • Accepted : 2021.03.21
  • Published : 2021.04.01

Abstract

A study is performed for the real time fault diagnosis during operation and health estimation relating to performance deterioration in a turbojet engine used for an unmanned air vehicle. For this study the real time dynamic model is derived from the transient thermodynamic gas path analysis. For real fault conditions which are manipulated for the simulation, the detection techniques are applied such as Kalman filter and probabilistic decision-making approach based on statistical hypothesis test. Thereby the effectiveness is verified by showing good fault detection and isolation performances. For the health estimation with measurement parameters, it shows using an assumed performance degradation that the method by adaptive Kalman filter is feasible in practice for a condition based diagnosis and maintenance.

무인기용 터보제트엔진의 운전 중 발생하는 고장을 실시간으로 진단하기 위한 방안 및 성능 열화와 관련된 건정성 추정에 관해 연구하였다. 이를 위해서, 동적 열역학 가스경로해석을 통한 비선형 동특성 방정식으로부터 실시간 선형모델을 도출하였고, 연출된 운전상황과 고장 발생을 실시간으로 진단하기 위해 칼만필터와 가설 검증에 기초한 확률적 판단 기법을 적용하였다. 이 결과, 분명한 고장 검출과 분리 성능을 보임으로써 그 효용성을 확인하였다. 측정변수를 통한 건전성 추정과 관련하여, 실제 엔진 구성품의 성능 열화 추이를 모사하였고, 적응형 칼만필터를 적용하여 추정 기법의 타당성을 입증함으로써, 상태 기반 고장 진단 및 정비 기법에 효과적으로 사용될 수 있음을 보였다.

Keywords

References

  1. Jonathan, S. L., Khary, I. P. and Santanu, C., "Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging," NASA/TM-2003-212607.
  2. Han, D. J., "A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control," International Journal of Aeronautical and Space Sciences, Vol. 19, No. 2, 2018, pp. 399-410. https://doi.org/10.1007/s42405-018-0032-4
  3. Safarinejadia, B. D. and Kowsari, E., "Fault Detection in Non-linear Systems Based on GPEKF and GP-UKF Algorithms," Systems Science and Control Engineering, Vol. 2, August 2014, pp. 610-620. https://doi.org/10.1080/21642583.2014.956843
  4. Hanlon, P. D. and Maybeck, P. S., "Multiple Model Adaptive Estimation Using a Residual Correlation Kalman Filter Bank," IEEE Transaction on Aerospace and Electronic Systems, Vol. 36, No. 2, April 2000, pp. 393-406. https://doi.org/10.1109/7.845216
  5. Smon, D. and Smon, D. L., "A Aircraft Turbofan Engine Health Estimation Using Constrained Kalman Filtering," Journal of Engineering for Gas Turbines and Power, Vol. 127, April 2005, pp. 323-328. https://doi.org/10.1115/1.1789153
  6. Simon, D. L. and Garg, S., "A Systematic Approach for Model-Based Aircraft Engine Performance Estimation," NASA/TM-2010- 216077.
  7. Kong, C. D., Kho, S. H. and Ki, J. Y., "A Study on Intelligent Performance Diagnosis of a Gas Turbine Engine Using Neural Network," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 32, No. 3, 2004, pp. 51-57. https://doi.org/10.5139/JKSAS.2004.32.3.051
  8. Borquet, S. and Leonard, O., "A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Performance Monitoring," Journal of Engineering for Gas Turbines and Power, Vol. 131, January 2009, pp. 601-1-608.
  9. Lu, J., Guo, Y. and Zhang, S., "Improved Hybrid Kalman Filter for In-Flight Aircraft Engine Performance Estimation," 14th International Conference on Aerospace Science and Aviation Technology, May 2011.
  10. Kobayashi, T. and Smon, D. L., "Integration of On-Line and Off-Line Diagnostic Algorithms for Aircraft Engine Health Management," NASA/TM-2007-214980, September 2007.
  11. Amare, D. F., Aklilu, T. B., Syed, I. G. and Konstantinos, G. K., "A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities," aerospace, July 2019, pp. 1-53.
  12. Smon, D. L., "Optimal State Estimation," WileyInterscience, 2006.
  13. Cohen, H. R. and Saravannmuttoo, H. I., "Gas Turbine Theory," 3rd ed, Longman Scientific and Technical, 1987.
  14. Yampolsky, J., "The Effect of Reynolds Number on Turbomachinery," LA, California, Conference of Gasturbine, ASME, May 1963.