Evaluation of the usefulness of IGRT(Image Guided Radiation Therapy) for markerless patients using SGPS(Surface-Guided Patient Setup)

표면유도환자셋업(Surface-Guided Patient Setup, SGPS)을 활용한 Markerless환자의 영상유도방사선치료(Image Guided Radiation Therapy, IGRT)시 유용성 평가

  • 이경재 (이대서울병원 방사선종양학과) ;
  • 이응만 (이대서울병원 방사선종양학과) ;
  • 이정수 (이대서울병원 방사선종양학과) ;
  • 김다연 (이대서울병원 방사선종양학과) ;
  • 고현준 (이대서울병원 방사선종양학과) ;
  • 최신철 (이대서울병원 방사선종양학과)
  • Published : 2021.12.31

Abstract

Purpose: The purpose of this study is to evaluate the usefulness of Surface-Guided Patient Setup by comparing the patient positioning accuracy when image-guided radiation therapy was used for Markerless patients(unmarked on the skin) using Surface-Guided Patient Setup and Marker patients(marked on the skin) using Laser-Based Patient Setup. Materials And Methods: The position error during IGRT was compared between a Markerless patient initially set up with SGPS using an optical surface scanning system using three cameras and a Marker patient initially set up with LBPS that aligns the laser with the marker drawn on the patient's skin. Both SGPS and LBPS were performed on 20 prostate cancer patients and 10 Stereotactic Radiation Surgery patients, respectively, and SGPS was performed on an additional 60 breast cancer patients. All were performed IGRT using CBCT or OBI. Position error of 6 degrees of freedom was obtained using Auto-Matching System, and comparison and analysis were performed using Offline-Review in the treatment planning system. Result: The difference between the root mean square (RMS) of SGPS and LBPS in prostate cancer patients was Vrt -0.02cm, Log -0.02cm, Lat 0.01cm, Pit -0.01°, Rol -0.01°, Rtn -0.01°, SRS patients was Vrt 0.02cm, Log -0.05cm, Lat 0.00cm, Pit -0.30°, Rol -0.15°, Rtn -0.33°. there was no significant difference between the two regions. According to the IGRT standard of breast cancer patients, RMS was Vrt 0.26, Log 0.21, Lat 0.15, Pit 0.81, Rol 0.49, Rtn 0.59. Conclusion:. As a result of this study, the position error value of SGPS compared to LBPS did not show a significant difference between prostate cancer patients and SRS patients. In the case of additionally performed SGPS breast cancer patients, the position error value was not large based on IGRT. Therefore, it is considered that it will be useful to replace LBPS with SGPS, which has the great advantage of not requiring patient skin marking..

목 적: 본 연구는 표면유도환자셋업(Surface-Guided Patient Setup, SGPS)을 활용한 Markerless환자(피부에 표시를 시행하지 않은 환자)와 레이저기반환자셋업(Laser-Based Patient Setup, LBPS)을 활용한 Marker환자(피부에 표시를 시행한 환자)를 영상유도방사선치료(Image Guided Radiotherapy, IGRT)로 시행했을 때 환자 위치 정확도를 비교하여 SGPS의 유용성을 평가하는데 목적이 있다. 대상 및 방법: 3개의 카메라를 이용한 광학 표면 스캐닝시스템을 사용하여 SGPS로 초기 셋업한 Markerless 환자와 환자 피부에 그려진 Marker와 레이저를 정렬하는 LBPS로 초기 셋업한 Marker환자의 IGRT시 위치 오차를 비교하였다. SGPS,LBPS 모두 각각 전립선암 환자 20명, 뇌정위적방사선수술(Stereotactic Radiation Surgery, SRS) 환자 10명을 대상으로 시행하였고 SGPS의 경우는 추가로 유방암 환자 60명을 대상으로 시행하였다. 모두 CBCT 또는 OBI를 사용하여 IGRT를 시행하였다. 자동위치교정시스템(Auto-Matching System)을 이용하여 6방향(6 Degree Of Freedom, 6 DoF)의 위치 오차를 획득하였고 치료계획시스템에서 Offline-Review를 이용하여 비교, 분석하였다. 결 과 : 전립선암환자의 SGPS와 LBPS의 RMS(Root Mean Square) 차이는 Vrt -0.02cm, Log -0.02cm, Lat -0.01cm, Pit -0.01°, Rol -0.01°, Rtn -0.01°이였고 SRS 환자는 Vrt 0.02cm, Log -0.05cm, Lat 0.00cm, Pit -0.30°, Rol -0.15°, Rtn -0.33°으로 두 부위 모두 큰 차이가 없었다. 유방암환자의 IGRT기준 RMS는 Vrt 0.26, Log 0.21, Lat 0.15, Pit 0.81, Rol 0.49, Rtn 0.59으로 나타났다. 결 론 : 본 연구의 결과 LBPS 대비 SGPS의 위치 오차 값은 전립선암 환자와 SRS 환자의 경우 큰 차이를 보이지 않았다. 추가로 실시한 SGPS의 유방암 환자의 경우에도 IGRT기준으로 위치 오차 값이 크지 않았다. 따라서 환자 피부 표시를 필요로 하지 않는 큰 장점을 가진 SGPS로 LBPS를 대체하기에 유용할 것으로 사료된다.

Keywords

References

  1. Sun B, Chang J, Rong Y.: The more IGRT systems, the merrier?. J Appl Clin Med Phys. 2017;18(4):7-11 https://doi.org/10.1002/acm2.12126
  2. Delombaerde L, Petillion S, Michiels S, Weltens C, Depuydt T.: Development and accuracy evaluation of a single-camera intrabore surface scanning system for radiotherapy in an O-ring linac. Phys Imaging Radiat Oncol. 2019;1(11):21-6.
  3. Rossi M. IGRT from 2D to 4D, changing the verifcation paradigm. Netherlands Cancer Institute. Amsterdam. Radiother Oncol. 2018;127:S125-126. https://doi.org/10.1016/S0167-8140(18)30554-1
  4. Dawson LA, Sharpe MB.: Image-guided radiotherapy: rationale, benefits, and limitations. Lancet Oncol. 2006;7:848-85 https://doi.org/10.1016/S1470-2045(06)70904-4
  5. P. Freislederer, M. Kugele, M. Ollers, et al.: Recent advanced in Surface Guided Radiation Therapy. Radiation Oncology (2020) 15:187 https://doi.org/10.1186/s13014-020-01629-w
  6. Manger RP, Paxton AB, Pawlicki T, Kim GY.: Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Med Phys. 2015 May 1;42(5):2449-61. https://doi.org/10.1118/1.4918319
  7. Rusu I, Thomas TO, Roeske JC, Mescioglu I, Melian E, Surucu M.: Failure mode and effects analysis of linac-based liver stereotactic body radiotherapy. Med Phys. 2020:mp.13965.
  8. Lau SKM, Patel K, Kim T, Knipprath E, Kim GY, Cervino LI, et al.: Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neuro-Oncol. 2017 Apr 1;132(2): 307-12. https://doi.org/10.1007/s11060-017-2370-7
  9. Zhao B, Maquilan G, Jiang S, Schwartz DL.: Minimal mask immobilization with optical surface guidance for head and neck radiotherapy. J Appl Clin Med Phys. 2018;19(1):17-24 https://doi.org/10.1002/acm2.12211
  10. Stanley DN, Mcconnell KA, Kirby N, Gutierrez AN, Papanikolaou N, Rasmussen K.: Comparison of initial patient setup accuracy between surface imaging and three point localization: a retrospective analysis. J Appl Clin Med Phys. 2017 Nov 1;18(6):58-61. https://doi.org/10.1002/acm2.12183
  11. Batin E, Depauw N, MacDonald S, Lu H-MM.: Can surface imaging improve the patient setup for proton postmastectomy chest wall irradiation? Pract Radiat Oncol. 2016 Nov 1;6(6):e235-41. https://doi.org/10.1016/j.prro.2016.02.001
  12. Al-Hallaq H, Salter BJ.: Safety and quality improvements with SGRT. In: Hoisak JDP, Paxton AB, Waghorn B, Pawlicki TA,: Surface guided radiation therapy. Boca Raton, FL: Taylor and Francis; 2020. p. 25-50.
  13. Al-Hallaq HA, Gutierrez AN, Cervino LI,: Surface guidance in radiation therapy, in The modern technology of radiation therapy, vol. 4, J. Van Dyk, Ed. Madison, WI: Medical Physics Publishing.
  14. Haraldsson A, Ceberg S, Ceberg C, Back S, Engelholm S, Engstrom PE.: Surface-guided tomotherapy improves positioning and reduces treatment time: retrospective analysis of 16 835 treatment fractions. J Appl Clin Med Phys 2020;21:139-48.
  15. F. Walter, P. Freislederer, C. Belka, C. Heinz, M. Sohn, and F. Roeder,: Evaluation of daily patient positioning for radiotherapy with a commercial 3D surface-imaging system (CatalystTM), Radiat Oncol, vol. 11, Nov. 2016, doi: 10.1186/s13014-016-0728-1.
  16. D. N. Stanley, K. A. McConnell, N. Kirby, A. N. Gutierrez, N. Papanikolaou, and K. Rasmussen,: Comparison of initial patient setup accuracy between surface imaging and three point localization: A retrospective analysis, J Appl Clin Med Phys, vol. 18, no. 6, pp. 58-61, Nov. 2017, doi: 10.1002/acm2.12183.
  17. A. Haraldsson, S. Ceberg, C. Ceberg, S. Back, S. Engelholm, and P. E. Engstrom,: Surface-guided tomotherapy improves positioning and reduces treatment time: A retrospective analysis of 16 835 treatment fractions, Journal of Applied Clinical Medical Physics, Jun. 2020, doi: 10.1002/acm2.12936