DOI QR코드

DOI QR Code

Prediction of scour around single vertical piers with different cross-section shapes

  • Received : 2020.05.23
  • Accepted : 2021.02.26
  • Published : 2021.03.25

Abstract

In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

Keywords

References

  1. Agui, J.H. and Andreopoulos, J. (1992), "Experimental investigation of a three-dimensional boundary layer flow in the vicinity of an upright wall mounted cylinder (data bank contribution)".
  2. Baker, C.J. (1980), "The turbulent horseshoe vortex", J. Wind Eng. Ind. Aerod., 6, 9-23. https://doi.org/10.1016/0167-6105(80)90018-5
  3. Baykal,, C., Sumer, B.M., Fuhrman, D.R., Jacobsen, N.G. and Fredsoe, J. (2015), "Numerical investigation of flow and scour around a vertical circular cylinder", Philosoph. T. Roy. Soc. A: Math. Phys. Eng. Sci., 373, https://doi.org/10.1098/rsta.2014.0104.
  4. Baykal, C., Sumer, B.M., Fuhrman, D.R., Jacobsen, N.G. and Fredsoe, J. (2017), "Numerical simulation of scour and backfilling processes around a circular pile in waves", Coast. Eng., 122, 87-107. https://doi.org/10.1016/j.coastaleng.2017.01.004
  5. Cebeci, T. and Bradshaw, P. (1977), "Momentum transfer in boundary layers", Washington, DC, Hemisphere Publishing Corp.; New York, McGraw-Hill Book Co.
  6. Dargahi, B. (1989), "The turbulent flow field around a circular cylinder", Exp. Fluid., 8, 1-12. https://doi.org/10.1007/BF00203058
  7. Dargahi, B. (1990), "Controlling mechanism of local scouring", J. Hydraul. Eng. -ASCE, 116, 1197-1214. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1197)
  8. De Ruiter, J.C.C. (1983), "Incipient motion and pick-up of sediment as function of local variables", unpublished notes, Delft Hydraulics, Delft.
  9. Dey, S., Bose, S.K. and Sastry, G.L.N. (1995), "Clear water scour at circular piers: a model", J. Hydraul. Eng. -ASCE, 121, 869-876. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869)
  10. Engelund, F. and Fredsoe, J. (1976), "A sediment transport model for straight alluvial channels", Hydrology Res., 7, 293-306. https://doi.org/10.2166/nh.1976.0019
  11. Escauriaza, C. and Sotiropoulos, F. (2011), "Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier", J. Geophys. Res.: Earth Surface, 116.
  12. Exner, F.M. (1925), "Uber die wechselwirkung zwischen wasser und geschiebe in flussen", Akad. Wiss. Wien Math. Naturwiss. Klasse, 134, 165-204.
  13. Ferziger, J.H., Peric, M. and Street, R.L. (2008), Numerische Stromungsmechanik, Springer.
  14. Fleming, J.L., Simpson, R.L., Cowling, J.E. and Devenport, W.J. (1993), "An experimental study of a turbulent wing-body junction and wake flow", Exp. Fluid., 14, 366-378. https://doi.org/10.1007/BF00189496
  15. Fleming, J.L., Simpson, R.L. and Devenport, W. J. (1991), "An experimental study of a turbulent wing-body junction and wake flow(Technical Report, 1 Jun. 1989- 31 Aug. 1991)".
  16. Fuhrman, D.R., Dixen, M. and Jacobsen, N.G. (2010), "Physically-consistent wall boundary conditions for the k-ω turbulence model", J. Hydraulic Res., 48, 793-800. https://doi.org/10.1080/00221686.2010.531100
  17. Ghiassi, R. and Abbasnia, A.H. (2013), "Investigation of vorticity effects on local scouring", Arabian J. Sci. Eng., 537-548. https://doi.org/10.1007/s13369-012-0337-8
  18. Gothel, O. (2008), Numerical modeling of flow and wave-induced scour around vertical structures.
  19. Gothel, O. and Zielke, W. (2007), "Numerical Modelling of Scour at Offshore Wind Turbines", Coast. Eng., 5, 2343-2353.
  20. Graf, W.H. and Istiarto, I. (2002), "Flow pattern in the scour hole around a cylinder", J. Hydraulic Res., 40, 13-20. https://doi.org/10.1080/00221680209499869
  21. Hansen, E.A., Simonsen, H.J., Nielsen, A.W., Pedersen, J. and Hogedal, M. (2007), "Scour protection around offshore wind turbine foundations, full-scale measurements", 132-138.
  22. Issa, R.I. (1986), "Solution of the implicitly discretised fluid flow equations by operator-splitting", J. Comput. Phys., 62, 40-65. https://doi.org/10.1016/0021-9991(86)90099-9
  23. Khosronejad, A., Kang, S., Borazjani, I. and Sotiropoulos, F. (2011), "Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena", Adv. Water Resour., 34, 829-843. https://doi.org/10.1016/j.advwatres.2011.02.017
  24. Khosronejad, A., Kang, S. and Sotiropoulos, F. (2012), "Experimental and computational investigation of local scour around bridge piers", Adv. Water Resour., 37, 73-85. https://doi.org/10.1016/j.advwatres.2011.09.013
  25. Kim, H.S., Nabi, M., Kimura, I. and Shimizu, Y. (2014), "Numerical investigation of local scour at two adjacent cylinders", Adv. Water Resour., 70, 131-147. https://doi.org/10.1016/j.advwatres.2014.04.018
  26. Kirkil, G., Constantinescu, G. and Ettema, R. (2005), The horseshoe vortex system around a circular bridge pier on equilibrium scoured bed, Impacts of Global Climate Change.
  27. Kirkil, G., Constantinescu, G. and Ettema, R. (2009), "Detached eddy simulation investigation of turbulence at a circular pier with scour hole", J. Hydraul. Eng. -ASCE, 135, 888-901. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000101
  28. Kirkil, G., Constantinescu, G. and Ettema, R. (2008), "Coherent structures in the flow field around a circular cylinder with scour hole", J. Hydraul. Eng. -ASCE, 134, 572-587. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(572)
  29. Kovacs, A. and Parker, G. (1994), "A new vectorial bedload formulation and its application to the time evolution of straight river channels", J. Fluid Mech., 267, 153-183. https://doi.org/10.1017/S002211209400114X
  30. Liang, D. and Cheng, L. (2005), "Numerical model for wave-induced scour below a submarine pipeline", J. Waterw Port Coast. Ocean Eng., 131, 193-202. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:5(193)
  31. Liu, X. and Garcia, M.H. (2008), "Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour", J. waterway, port, coast. ocean Eng., 134, 203-217. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:4(203)
  32. Melville, B.W. and Chiew, Y.M. (1999), "Time scale for local scour at bridge piers", J. Hydraul. Eng. -ASCE, 125, 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  33. Menter, F.R. (1992), "Improved two-equation k-ω turbulence models for aerodynamic flows. NASA STI". Recon Technical Report 93, 22809.
  34. Nezu, I. (1977), "Turbulent structure in open-channel flows", English translation of the Japanese dissertation of Iehisa Nezu. .
  35. Olsen, N.R.B. and Kjellesvig, H.M. (1998), "Three-dimensional numerical flow modeling for estimation of maximum local scour depth", J. Hydraul. Res., 36, 579-590. https://doi.org/10.1080/00221689809498610
  36. Olsen, N.R.B. and Melaaen, M.C. (1993), "Three-dimensional calculation of scour around cylinders", J. Hydraul. Eng. -ASCE, 119, 1048-1054. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1048)
  37. Omara, H., Elsayed, S.M., Abdeelaal, G.M., Abd-Elhamid, H.F. and Tawfik, A. (2019), "Hydromorphological numerical model of the local scour process around bridge piers", Arabian J. Sci. Eng., 44, 4183-4199. https://doi.org/10.1007/s13369-018-3359-z
  38. Parker, G., Seminara, G. and Solari, L. (2003), "Bed load at low Shields stress on arbitrarily sloping beds: Alternative entrainment formulation", Water Resour. Res., 39.
  39. Rijn, L.C.V. (1984), "Sediment transport, part II: suspended load transport", J. Hydraul. Eng. -ASCE, 110, 1613-1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  40. Roulund, A., Sumer, B.M., Fredsoe, J. and Michelsen, J. (2005), "Numerical and experimental investigation of flow and scour around a circular pile", J. Fluid Mech., 534, 351-401. https://doi.org/10.1017/S0022112005004507
  41. Salaheldin, T. M., Imran, J. and Chaudhry, M.H. (2004), "Numerical modeling of three-dimensional flow field around circular piers", J. Hydraul. Eng. -ASCE, 130, 91-100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91)
  42. Seal, C.V. and Smith, C.R. (1999), "Visualization of a mechanism for three-dimensional interaction and nearwall eruption", J. Fluid Mech., 394, 193-203. https://doi.org/10.1017/S0022112099005571
  43. Soulsby, R. (1997), Dynamics of marine sands: a manual for practical applications, Thomas Telford.
  44. Soulsby, R. and Whitehouse, R. (1997), "Threshold of sediment motion in coastal environments", Pacific Coasts and Ports' 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1: Centre for Advanced Engineering, University of Canterbury, 145.
  45. Stahlmann, A. (2013), "Numerical and experimental modeling of scour at foundation structures for offshore wind turbines", Int. Soc. Offshore Polar Engineers.
  46. Stahlmann, A. and Schlurmann, T. (2012), "Numerical and Experimental Modeling of Scour at Tripod Foundations for Offshore Wind Turbines", Proceedings of the 6th International Conference on Scour and Erosion, , Paris, France.
  47. Sumer, B. M., Baykal, C., Fuhrman, D.R., Jacobsen, N.G. and Fredsoe, J. (2014), "Numerical calculation of backfilling of scour holes".
  48. Sumer, B.M., Christiansen, N. and Fredsoe, J. (1993), "Influence of cross section on wave scour around piles", J. waterway, port, coast. ocean engineering, 119, 477-495. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(477)
  49. Sumer, B.M., Chua, L.H.C., Cheng, N.S. and Fredsoe, J. (2003), "Influence of turbulence on bed load sediment transport", J. Hydraul. Eng. -ASCE, 129, 585-596. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(585)
  50. Sumer, B.M., Cokgor, S. and Fredsoe, J. (2001), "Suction removal of sediment from between armor blocks", J. Hydraul. Eng. -ASCE, 127, 293-306. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(293)
  51. Sumer, B.M. and Fredsoe, J. (2001a), "Scour around pile in combined waves and current", J. Hydraul. Eng. - ASCE, 127, 403-411. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(403)
  52. Sumer, B.M. and Fredsoe, J. (2001b), "Wave scour around a large vertical circular cylinder", J. Waterw Port Coast. Ocean Eng., 127, 125-134. https://doi.org/10.1061/(ASCE)0733-950X(2001)127:3(125)
  53. Sumer, B.M., Fredsoe, J. and Christiansen, N. (1992), "Scour around vertical pile in waves", J. Waterw Port Coast. Ocean Eng., 118, 15-31. https://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(15)
  54. Sumer, B.M., Petersen, T.U., Locatelli, L., Fredsoe, J., Musumeci, R.E. and Foti, E. (2012), "Backfilling of a scour hole around a pile in waves and current", J. Waterw Port Coast. Ocean Eng., 139, 9-23. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000161
  55. Topczewski, L., Ciesla, J., Mikolajewski, P., Adamski, P. and Markowski, Z. (2016), "Monitoring of scour around bridge piers and abutments", T. Res.Procedia, 14, 3963-3971. https://doi.org/10.1016/j.trpro.2016.05.493
  56. Tseng, M.H., Yen, C.L. and Song, C.C.S. (2000), "Computation of three‐dimensional flow around square and circular piers", Int.l J. Numer. Method, Fluid., 34, 207-227. https://doi.org/10.1002/1097-0363(20001015)34:3<207::AID-FLD31>3.0.CO;2-R