References
- Y. Li, H. Dai, "Recent advances in zinc-air batteries", Chem. Soc. Rev., Vol. 43, No. 15, 2014, pp. 5257-5275, doi: https://doi.org/10.1039/C4CS00015C.
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X. W. Lou, "Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage", Adv. Mater. Vol. 24, No. 38, 2012, pp. 5166-5180, doi: https://doi.org/10.1002/adma.201202146.
- S. Guo, S. Zhang, and S. Sun, "Tuning nanoparticle catalysis for the oxygen reduction reaction", Angew. Chem. Int. Ed., Vol. 52, No. 33, 2013, pp. 8526-8544, doi: https://doi.org/10.1002/anie.201207186.
- J. H. Yang, H. J. Sun, G. Park, J. C. An, and J. Shim. "Synthesis of highly porous LaCoO3 catalyst by nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution", J. Electroceram., Vol. 41, 2018, pp. 80-87, doi: https://doi.org/10.1007/s10832-018-0165-7.
- V. Elayappan, R. Shanmugam, S. Chinnusamy, D. J. Yoo, G. Mayakrishnan, K. Kim, H. S. Noh, M. K. Kim, and H. Lee, "Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution", Appl. Surf. Sci., Vol. 505, 2020, pp. 144642, doi: https://doi.org/10.1016/j.apsusc.2019.144642.
- R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chem. Commun., Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C.
- S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, "Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions", ACS Appl. Mater. Interfaces, Vol. 11, No. 13, 2019, pp. 12504-12515, doi: https://doi.org/10.1021/acsami.9b00192.
- S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Appl. Cat. B: Environ., Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381.
- Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application", Nano Lett., Vol. 12, No. 4, 2012, pp. 1946-1952, doi: https://doi.org/10.1021/nl2044327.
- W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, and K. J. Stevenson, "Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes", J. Phys. Chem. Lett., Vol. 4, 2013, pp. 1254-1259, doi: https://doi.org/10.1021/jz400595z.
- Y. Xue, S. Sun, Q. Wang, Z. Donga and Z. Liu, "Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes", J. Mater. Chem. A, Vol. 23, 2018, pp. 10595-10626, doi: https://doi.org/10.1039/c7ta10569j.
- Z. Shao and S. M. Haile, "A high-performance cathode for the next generation of solid-oxide fuel cells", Nature, Vol. 431, 2004, pp. 170-173, doi: https://doi.org/10.1038/nature02863.
- D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, and J. B. Goodenough, "Active LaNi1-xFexO3 bifunctional catalysts for air cathodes in alkaline media", J. Mater. Chem. A, Vol. 3, No. 18, 2015, pp. 9421-9426, doi: https://doi.org/10.1039/C5TA01005E.
- W. Zhou, R. Ran, and Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review", J. Power Sources, Vol. 192, No. 2, 2009, pp. 231-246, doi: https://doi.org/10.1016/j.jpowsour.2009.02.069.
- K. Lopez, G. Park, H. J. Sun, J. C. An, S. Eom, and J. Shim, "Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3 (x= 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, pp. 313-323, doi: https://doi.org/10.1007/s10800-015-0798-z.
- S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, "The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes", Electrochim. Acta, Vol. 52, No. 4, 2006, pp. 1592-1595, doi: https://doi.org/10.1016/j.electacta.2006.02.067.
- J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang, and X. B. Zhang, "Synthesis of perovskite‐based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries", Angew. Chem. Int. Ed., Vol. 52, No. 14, 2013, pp. 3887-3890, doi: https://doi.org/10.1002/anie.201210057.
- J. Deng, L. Zhang, H. Dai, and C. T. Au, "In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate", Appl. Cat. A: General, Vol. 352, No. 1-2, 2009, pp. 43-49, doi: https://doi.org/10.1016/j.apcata.2008.09.037.
- K. Kim, K. Lopez, H. J. Sun, J. C. An, G. Park, and J. Shim, "Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution", J. Appl. Electrochem., Vol. 48, 2018, pp. 1231-1241, doi: https://doi.org/10.1007/s10800-018-1245-8.
- J. Shim, K. J. Lopez, H. J. Sun, G. Park, J. C. An, S. Eom, S. Shimpalee, and J. W. Weidner, "Preparation and characterization of electrospun LaCoO3 fibers for oxygen reduction and evolution in rechargeable Zn-air batteries", J. Appl. Electrochem., Vol. 45, 2015, pp. 1005-1012, doi: https://doi.org/10.1007/s10800-015-0868-2.
- R. Robert, L. Bocher, B. Sipos, M. Dobeli, and A. Weidenkaff, "Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters", Prog. Solid State Chem., Vol. 35, No. 2-4, 2007, pp. 447-455, doi: https://doi.org/10.1016/j.progsolidstchem.2007.01.020.
- S. Q. Chen and Y. Liu, "LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol", Int. J. Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4735-4746, doi: https://doi.org/10.1016/j.ijhydene.2009.03.048.
- M. Mousavi and A. N. Pour, "Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method", New J. Chem., Vol. 43, No. 27, 2019, pp. 10763-10773, doi: https://doi.org/10.1039/C9NJ01805K.
- M. Mao, J. Xu, M. Zhu, Y. Li, and Z. Liu, "Highly efficient catalytic hydrogen production of Co(OH)2-modified rare-earth perovskite LaNiO3 composite under visible light", Appl Nanosci, Vol. 10, 2020, pp. 4361-4374, doi: https://doi.org/10.1007/s13204-020-01343-9.
- J. A. Villoria, M. C. Alvarez-Galvan, S. M. Al-Zahrani, P. Palmisano, S. Specchia, V. Specchia, J. L. G. Fierro, and R. M. Navarro, "Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: influence of perovskite synthesis method on catalyst properties and performance", Appl. Catalysis B: Environmental, Vol. 105, No. 3-4, 2011, pp. 276-288, doi: https://doi.org/10.1016/j.apcatb.2011.04.010.
- M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., Vol. 257, No. 7, 2011, pp. 2717-2730, doi: https://doi.org/10.1016/j.apsusc.2010.10.051.
- J. F. Moulder, W. F. Stickle, P. E'Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy", PerkinElmer Corporation, USA, 1992.
- H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan, M. Zhou, and H. Luo, "Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts", Electrochim. Acta, Vol. 296, 2019, pp. 945-953, doi: https://doi.org/10.1016/j.electacta.2018.11.075.
- J. Yang and T. Sasaki, "Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating", Chem. Mater., Vol. 20, No. 5, 2008, pp. 2049-2056, doi: https://doi.org/10.1021/cm702868u.
- P. T. Babar, A. C. Lokhande, M. G. Gang, B. S. Pawar, S. M. Pawar, and J. H. Kim, "Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application", J. Ind. Eng. Chem., Vol. 60, 2018, pp. 493-497, doi: https://doi.org/10.1016/j.jiec.2017.11.037.
- J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, and S. Zhang, "Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction", Energy Environ. Sci., Vol. 12, No. 2, 2019, pp. 739-746, doi: https://doi.org/10.1039/C8EE03208D.
- A. Bergmann, T. E. Jones, E. M. Moreno, D. Teschner, P. Chernev, M. Gliech, T. Reier, H. Dau, and P. Strasser, "Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction", Nature Cat., Vol. 1, 2018, pp. 711-719, doi: https://doi.org/10.1038/s41929-018-0141-2.
- A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, and X. Hu, "Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step", J. Am. Chem. Soc., Vol. 142, No. 27, 2020, pp. 11901-11914, doi: https://doi.org/10.1021/jacs.0c04867.
- J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, and S. Wei, "CoOOH nanosheets with high mass activity for water oxidation", Angew. Chem., Vol. 54, No. 30, 2015, pp. 8722-8727, doi: https://doi.org/10.1002/anie.201502836.