DOI QR코드

DOI QR Code

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution

과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성

  • BO, LING (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • RIM, HYUNG-RYUL (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • LEE, HONG-KI (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • PARK, GYUNGSE (Department of Chemistry, Kunsan National University) ;
  • SHIM, JOONGPYO (Department of Nano & Chemical Engineering, Kunsan National University)
  • 버링 (군산대학교 나노화학공학과) ;
  • 임형렬 (우석대학교 연료전지 지역혁신센터) ;
  • 이홍기 (우석대학교 연료전지 지역혁신센터) ;
  • 박경세 (군산대학교 화학과) ;
  • 심중표 (군산대학교 나노화학공학과)
  • Received : 2021.01.29
  • Accepted : 2021.02.28
  • Published : 2021.02.28

Abstract

NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Keywords

References

  1. Y. Li, H. Dai, "Recent advances in zinc-air batteries", Chem. Soc. Rev., Vol. 43, No. 15, 2014, pp. 5257-5275, doi: https://doi.org/10.1039/C4CS00015C.
  2. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X. W. Lou, "Recent advances in metal oxide‐based electrode architecture design for electrochemical energy storage", Adv. Mater. Vol. 24, No. 38, 2012, pp. 5166-5180, doi: https://doi.org/10.1002/adma.201202146.
  3. S. Guo, S. Zhang, and S. Sun, "Tuning nanoparticle catalysis for the oxygen reduction reaction", Angew. Chem. Int. Ed., Vol. 52, No. 33, 2013, pp. 8526-8544, doi: https://doi.org/10.1002/anie.201207186.
  4. J. H. Yang, H. J. Sun, G. Park, J. C. An, and J. Shim. "Synthesis of highly porous LaCoO3 catalyst by nanocasting and its performance for oxygen reduction and evolution reactions in alkaline solution", J. Electroceram., Vol. 41, 2018, pp. 80-87, doi: https://doi.org/10.1007/s10832-018-0165-7.
  5. V. Elayappan, R. Shanmugam, S. Chinnusamy, D. J. Yoo, G. Mayakrishnan, K. Kim, H. S. Noh, M. K. Kim, and H. Lee, "Three-dimensional bimetal TMO supported carbon based electrocatalyst developed via dry synthesis for hydrogen and oxygen evolution", Appl. Surf. Sci., Vol. 505, 2020, pp. 144642, doi: https://doi.org/10.1016/j.apsusc.2019.144642.
  6. R. Kannan, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell", Chem. Commun., Vol. 50, No. 93, 2014, pp. 14623-14626, doi: https://doi.org/10.1039/C4CC06879C.
  7. S. Ramakrishnan, M. Karuppannan, M. Vinothkannan, K. Ramachandran, O. J. Kwon, and D. J. Yoo, "Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions", ACS Appl. Mater. Interfaces, Vol. 11, No. 13, 2019, pp. 12504-12515, doi: https://doi.org/10.1021/acsami.9b00192.
  8. S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Appl. Cat. B: Environ., Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381.
  9. Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application", Nano Lett., Vol. 12, No. 4, 2012, pp. 1946-1952, doi: https://doi.org/10.1021/nl2044327.
  10. W. G. Hardin, D. A. Slanac, X. Wang, S. Dai, K. P. Johnston, and K. J. Stevenson, "Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes", J. Phys. Chem. Lett., Vol. 4, 2013, pp. 1254-1259, doi: https://doi.org/10.1021/jz400595z.
  11. Y. Xue, S. Sun, Q. Wang, Z. Donga and Z. Liu, "Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes", J. Mater. Chem. A, Vol. 23, 2018, pp. 10595-10626, doi: https://doi.org/10.1039/c7ta10569j.
  12. Z. Shao and S. M. Haile, "A high-performance cathode for the next generation of solid-oxide fuel cells", Nature, Vol. 431, 2004, pp. 170-173, doi: https://doi.org/10.1038/nature02863.
  13. D. Zhang, Y. Song, Z. Du, L. Wang, Y. Li, and J. B. Goodenough, "Active LaNi1-xFexO3 bifunctional catalysts for air cathodes in alkaline media", J. Mater. Chem. A, Vol. 3, No. 18, 2015, pp. 9421-9426, doi: https://doi.org/10.1039/C5TA01005E.
  14. W. Zhou, R. Ran, and Z. Shao, "Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3-δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review", J. Power Sources, Vol. 192, No. 2, 2009, pp. 231-246, doi: https://doi.org/10.1016/j.jpowsour.2009.02.069.
  15. K. Lopez, G. Park, H. J. Sun, J. C. An, S. Eom, and J. Shim, "Electrochemical characterizations of LaMO3 (M = Co, Mn, Fe, and Ni) and partially substituted LaNixM1-xO3 (x= 0.25 or 0.5) for oxygen reduction and evolution in alkaline solution", J. Appl. Electrochem., Vol. 45, 2015, pp. 313-323, doi: https://doi.org/10.1007/s10800-015-0798-z.
  16. S. W. Eom, C. W. Lee, M. S. Yun, and Y. K. Sun, "The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes", Electrochim. Acta, Vol. 52, No. 4, 2006, pp. 1592-1595, doi: https://doi.org/10.1016/j.electacta.2006.02.067.
  17. J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang, and X. B. Zhang, "Synthesis of perovskite‐based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries", Angew. Chem. Int. Ed., Vol. 52, No. 14, 2013, pp. 3887-3890, doi: https://doi.org/10.1002/anie.201210057.
  18. J. Deng, L. Zhang, H. Dai, and C. T. Au, "In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: high activity for the complete oxidation of toluene and ethyl acetate", Appl. Cat. A: General, Vol. 352, No. 1-2, 2009, pp. 43-49, doi: https://doi.org/10.1016/j.apcata.2008.09.037.
  19. K. Kim, K. Lopez, H. J. Sun, J. C. An, G. Park, and J. Shim, "Electrochemical performance of bifunctional Co/graphitic carbon catalysts prepared from metal-organic frameworks for oxygen reduction and evolution reactions in alkaline solution", J. Appl. Electrochem., Vol. 48, 2018, pp. 1231-1241, doi: https://doi.org/10.1007/s10800-018-1245-8.
  20. J. Shim, K. J. Lopez, H. J. Sun, G. Park, J. C. An, S. Eom, S. Shimpalee, and J. W. Weidner, "Preparation and characterization of electrospun LaCoO3 fibers for oxygen reduction and evolution in rechargeable Zn-air batteries", J. Appl. Electrochem., Vol. 45, 2015, pp. 1005-1012, doi: https://doi.org/10.1007/s10800-015-0868-2.
  21. R. Robert, L. Bocher, B. Sipos, M. Dobeli, and A. Weidenkaff, "Ni-doped cobaltates as potential materials for high temperature solar thermoelectric converters", Prog. Solid State Chem., Vol. 35, No. 2-4, 2007, pp. 447-455, doi: https://doi.org/10.1016/j.progsolidstchem.2007.01.020.
  22. S. Q. Chen and Y. Liu, "LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol", Int. J. Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4735-4746, doi: https://doi.org/10.1016/j.ijhydene.2009.03.048.
  23. M. Mousavi and A. N. Pour, "Performance and structural features of LaNi0.5Co0.5O3 perovskite oxides for the dry reforming of methane: influence of the preparation method", New J. Chem., Vol. 43, No. 27, 2019, pp. 10763-10773, doi: https://doi.org/10.1039/C9NJ01805K.
  24. M. Mao, J. Xu, M. Zhu, Y. Li, and Z. Liu, "Highly efficient catalytic hydrogen production of Co(OH)2-modified rare-earth perovskite LaNiO3 composite under visible light", Appl Nanosci, Vol. 10, 2020, pp. 4361-4374, doi: https://doi.org/10.1007/s13204-020-01343-9.
  25. J. A. Villoria, M. C. Alvarez-Galvan, S. M. Al-Zahrani, P. Palmisano, S. Specchia, V. Specchia, J. L. G. Fierro, and R. M. Navarro, "Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: influence of perovskite synthesis method on catalyst properties and performance", Appl. Catalysis B: Environmental, Vol. 105, No. 3-4, 2011, pp. 276-288, doi: https://doi.org/10.1016/j.apcatb.2011.04.010.
  26. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. St. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni", Appl. Surf. Sci., Vol. 257, No. 7, 2011, pp. 2717-2730, doi: https://doi.org/10.1016/j.apsusc.2010.10.051.
  27. J. F. Moulder, W. F. Stickle, P. E'Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy", PerkinElmer Corporation, USA, 1992.
  28. H. Wang, W. Xu, S. Richins, K. Liaw, L. Yan, M. Zhou, and H. Luo, "Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts", Electrochim. Acta, Vol. 296, 2019, pp. 945-953, doi: https://doi.org/10.1016/j.electacta.2018.11.075.
  29. J. Yang and T. Sasaki, "Synthesis of CoOOH hierarchically hollow spheres by nanorod self-assembly through bubble templating", Chem. Mater., Vol. 20, No. 5, 2008, pp. 2049-2056, doi: https://doi.org/10.1021/cm702868u.
  30. P. T. Babar, A. C. Lokhande, M. G. Gang, B. S. Pawar, S. M. Pawar, and J. H. Kim, "Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application", J. Ind. Eng. Chem., Vol. 60, 2018, pp. 493-497, doi: https://doi.org/10.1016/j.jiec.2017.11.037.
  31. J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, and S. Zhang, "Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction", Energy Environ. Sci., Vol. 12, No. 2, 2019, pp. 739-746, doi: https://doi.org/10.1039/C8EE03208D.
  32. A. Bergmann, T. E. Jones, E. M. Moreno, D. Teschner, P. Chernev, M. Gliech, T. Reier, H. Dau, and P. Strasser, "Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction", Nature Cat., Vol. 1, 2018, pp. 711-719, doi: https://doi.org/10.1038/s41929-018-0141-2.
  33. A. Moysiadou, S. Lee, C. S. Hsu, H. M. Chen, and X. Hu, "Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step", J. Am. Chem. Soc., Vol. 142, No. 27, 2020, pp. 11901-11914, doi: https://doi.org/10.1021/jacs.0c04867.
  34. J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, and S. Wei, "CoOOH nanosheets with high mass activity for water oxidation", Angew. Chem., Vol. 54, No. 30, 2015, pp. 8722-8727, doi: https://doi.org/10.1002/anie.201502836.