DOI QR코드

DOI QR Code

Automatic Anatomical Classification Model of Esophagogastroduodenoscopy Images Using Deep Convolutional Neural Networks for Guiding Endoscopic Photodocumentation

  • Park, Jung-Whan (Dept. of Computer Science and Engineering, Kangwon National University) ;
  • Kim, Yoon (Dept. of Computer Science and Engineering, Kangwon National University) ;
  • Kim, Woo-Jin (Dept. of Internal Medicine and Biomedical Informatics, Kangwon National University) ;
  • Nam, Seung-Joo (Dept. of Internal Medicine, Kangwon National University School of Medicine)
  • Received : 2021.01.18
  • Accepted : 2021.02.24
  • Published : 2021.03.31

Abstract

Esophagogastroduodenoscopy is a method commonly used for early diagnosis of upper gastrointestinal lesions. However, 10-20 percent of the gastric lesions are reported to be missed, due to human error. And countries including the US, the UK, and Japan, the World Endoscopy Organization (WEO) suggested guidelines about essential gastrointestinal parts to take pictures of so that all gastric lesions are observed. In this paper, we propose deep learning techniques for classification of anatomical sites, aiming for the system that informs practitioners whether they successfully did the gastroscopy without blind spots. The proposed model uses pre-processing modules and data augmentation techniques suitable for gastroscopy images. Not only does the experiment result with a maximum F1 score of 99.6%, but it also shows a error rate of less than 4% based on the actual data. Given the performance results, we found the model to be explainable with the potential to be utilized in the clinical area.

위내시경 촬영은 조기에 위 병변을 진단하기 위해서 주로 사용한다. 하지만 위내시경을 했음에도 불구하고 위 내부를 자세히 관찰하지 못해서 10~20% 위 병변을 놓치는 경우가 생기는 것으로 보고되고 있다. 미국, 영국, 일본 등의 일부 국가와 세계내시경협회(Wold Endoscopy Organization)에서는 위내시경 시에 맹점 없는 관찰을 위해서 반드시 촬영해야 할 부위에 대한 촬영지침을 제안한 바 있다. 이에 본 논문에서는 수련의가 내시경을 하는 데 있어 위 내부를 자동으로 맹점 없이 관찰하는데 필요한 딥러닝 기술인 해부학적 분류모델을 제안한다. 제안한 모델은 위내시경 이미지에 적합한 전처리 모듈과 데이터 증강 기술들을 사용한다. 실험결과를 통해 최대 F1 점수 99.6% 분류 성능을 확인하였다. 또한, 실제 데이터를 통한 실험결과에서도 에러율이 4% 미만을 보였다. 이러한 성능을 바탕으로 설명 가능한 모델임을 보여 임상에서의 사용 가능성을 확인하였다.

Keywords

References

  1. Misawa, Masashi, Shin-ei Kudo, Yuichi Mori, Hiroki Nakamura, Shinichi Kataoka, Yasuharu Maeda, Toyoki Kudo et al. "Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy." Gastroenterology VOLUME 150, ISSUE 7, pp 1531-1532, JUNE 01, 2016, DOI: https://doi.org/10.1053/j.gastro.2016.04.004
  2. Urban, Gregor, et al. "Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy." Gastroenterology Volume 155, Issue 4, pp 1069-1078, October 2018, DOI: https://doi.org/10.1053/j.gastro.2018.06.037
  3. Lui, Thomas KL, Vivien WM Tsui, and Wai K. Leung. "Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis." Gastrointestinal endoscopy Volume 92, Issue 4, pp 821-830. October 2020, DOI: https://doi.org/10.1016/j.gie.2020.06.034
  4. Luo, Huiyan, et al. "Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study." The Lancet Oncology 20.12 pp 1645-1654, Dec 2019 DOI: https://doi.org/10.1016/S1470-2045(19)30637-0
  5. Chadwick G, Groene O, Riley S, et al. "Gastric Cancers Missed During Endoscopy in England". Clin Gastroenterol Hepato l13, no. 7 pp: 1264-1270, Jul 2015 DOI: https://doi.org/10.1016/j.cgh.2015.01.025
  6. Wang YR, Loftus EV, Jr., Judge TA, Peikin SR. "Rate and Predictors of Interval Esophageal and Gastric Cancers after Esophagogastroduodenoscopy in the United States. Digestion", Digestion 94, no. 3, pp 176-180, 2016 DOI: https://doi.org/10.1159/000452794
  7. Yalamarthi S, Witherspoon P, McCole D, Auld CD. "Missed diagnoses in patients with upper gastrointestinal cancers. Endoscopy", Endoscopy 36, no. 10, pp 874-879, Sep 2004 DOI:https://doi.org/10.1055/s-2004-825853
  8. Yao, Kenshi. "The endoscopic diagnosis of early gastric cancer." Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology 26.1 p 11, 2013:
  9. Bisschops, Raf, et al. "Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative." endoscopy 48, no. 09 pp 843-864. Sep 2016 DOI http://dx.doi.org/10.1055/s-0042-113128
  10. Emura, Fabian, et al. "Principles and practice to facilitate complete photodocumentation of the upper gastrointestinal tract: World Endoscopy Organization position statement." Digestive Endoscopy 32, no. 2 pp 168-179, Jan 2020 DOI: https://doi.org/10.1111/den.13530
  11. He, Qi, et al. "Deep learning-based anatomical site classification for upper gastrointestinal endoscopy." International Journal of Computer Assisted Radiology and Surgery 15, pp 1085-1094 May 2020. DOI: https://doi.org/10.1007/s11548-020-02148-5
  12. Takiyama, Hirotoshi, et al. "Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks." Scientific reports 8, no. 1 pp 1-8, May 2018 DOI: https://doi.org/10.1038/s41598-018-25842-6
  13. Wu, Lianlian, et al. "Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy." Gut 68, no. 12 pp 2161-2169 DOI: http://dx.doi.org/10.1136/gutjnl-2018-317366
  14. Igarashi, Shohei, et al. "Anatomical classification of upper gastrointestinal organs under various image capture conditions using AlexNet." Computers in Biology and Medicine 124 p.103950, Sep 2020 DOI: https://doi.org/10.1016/j.compbiomed.2020.103950
  15. Januszewicz, Wladyslaw, and Michal F. Kaminski. "Quality indicators in diagnostic upper gastrointestinal endoscopy." Therapeutic Advances in Gastroenterology 13 p.1756284820916693, May 2020 DOI: https://doi.org/10.1177/1756284820916693
  16. Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7132-7141, 2018.
  17. Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). pp. 3-19. 2018
  18. Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." arXiv preprint arXiv:1905.11946, 2019.
  19. Cubuk, Ekin D., Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501, 2018.
  20. He, Tong, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. "Bag of tricks for image classification with convolutional neural networks." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558-567. 2019.
  21. Sin-ae Lee, Kim, Dong-hyun, and Hyun-chong Cho. "Deep Learning based Gastric Lesion Classification System using Data Augmentation" The Transactions of The Korean Institute of Electrical Engineers 69, no. 7 pp. 1033-1039 , 2020, DOI : 10.5370/KIEE.2020.69.7.1033
  22. Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In Proceedings of the IEEE international conference on computer vision, pp. 618-626. 2017.