References
- Misawa, Masashi, Shin-ei Kudo, Yuichi Mori, Hiroki Nakamura, Shinichi Kataoka, Yasuharu Maeda, Toyoki Kudo et al. "Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy." Gastroenterology VOLUME 150, ISSUE 7, pp 1531-1532, JUNE 01, 2016, DOI: https://doi.org/10.1053/j.gastro.2016.04.004
- Urban, Gregor, et al. "Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy." Gastroenterology Volume 155, Issue 4, pp 1069-1078, October 2018, DOI: https://doi.org/10.1053/j.gastro.2018.06.037
- Lui, Thomas KL, Vivien WM Tsui, and Wai K. Leung. "Accuracy of artificial intelligence-assisted detection of upper GI lesions: a systematic review and meta-analysis." Gastrointestinal endoscopy Volume 92, Issue 4, pp 821-830. October 2020, DOI: https://doi.org/10.1016/j.gie.2020.06.034
- Luo, Huiyan, et al. "Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study." The Lancet Oncology 20.12 pp 1645-1654, Dec 2019 DOI: https://doi.org/10.1016/S1470-2045(19)30637-0
- Chadwick G, Groene O, Riley S, et al. "Gastric Cancers Missed During Endoscopy in England". Clin Gastroenterol Hepato l13, no. 7 pp: 1264-1270, Jul 2015 DOI: https://doi.org/10.1016/j.cgh.2015.01.025
- Wang YR, Loftus EV, Jr., Judge TA, Peikin SR. "Rate and Predictors of Interval Esophageal and Gastric Cancers after Esophagogastroduodenoscopy in the United States. Digestion", Digestion 94, no. 3, pp 176-180, 2016 DOI: https://doi.org/10.1159/000452794
- Yalamarthi S, Witherspoon P, McCole D, Auld CD. "Missed diagnoses in patients with upper gastrointestinal cancers. Endoscopy", Endoscopy 36, no. 10, pp 874-879, Sep 2004 DOI:https://doi.org/10.1055/s-2004-825853
- Yao, Kenshi. "The endoscopic diagnosis of early gastric cancer." Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology 26.1 p 11, 2013:
- Bisschops, Raf, et al. "Performance measures for upper gastrointestinal endoscopy: a European Society of Gastrointestinal Endoscopy (ESGE) quality improvement initiative." endoscopy 48, no. 09 pp 843-864. Sep 2016 DOI http://dx.doi.org/10.1055/s-0042-113128
- Emura, Fabian, et al. "Principles and practice to facilitate complete photodocumentation of the upper gastrointestinal tract: World Endoscopy Organization position statement." Digestive Endoscopy 32, no. 2 pp 168-179, Jan 2020 DOI: https://doi.org/10.1111/den.13530
- He, Qi, et al. "Deep learning-based anatomical site classification for upper gastrointestinal endoscopy." International Journal of Computer Assisted Radiology and Surgery 15, pp 1085-1094 May 2020. DOI: https://doi.org/10.1007/s11548-020-02148-5
- Takiyama, Hirotoshi, et al. "Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks." Scientific reports 8, no. 1 pp 1-8, May 2018 DOI: https://doi.org/10.1038/s41598-018-25842-6
- Wu, Lianlian, et al. "Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy." Gut 68, no. 12 pp 2161-2169 DOI: http://dx.doi.org/10.1136/gutjnl-2018-317366
- Igarashi, Shohei, et al. "Anatomical classification of upper gastrointestinal organs under various image capture conditions using AlexNet." Computers in Biology and Medicine 124 p.103950, Sep 2020 DOI: https://doi.org/10.1016/j.compbiomed.2020.103950
- Januszewicz, Wladyslaw, and Michal F. Kaminski. "Quality indicators in diagnostic upper gastrointestinal endoscopy." Therapeutic Advances in Gastroenterology 13 p.1756284820916693, May 2020 DOI: https://doi.org/10.1177/1756284820916693
- Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7132-7141, 2018.
- Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." Proceedings of the European conference on computer vision (ECCV). pp. 3-19. 2018
- Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." arXiv preprint arXiv:1905.11946, 2019.
- Cubuk, Ekin D., Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V. Le. "Autoaugment: Learning augmentation policies from data." arXiv preprint arXiv:1805.09501, 2018.
- He, Tong, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. "Bag of tricks for image classification with convolutional neural networks." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 558-567. 2019.
- Sin-ae Lee, Kim, Dong-hyun, and Hyun-chong Cho. "Deep Learning based Gastric Lesion Classification System using Data Augmentation" The Transactions of The Korean Institute of Electrical Engineers 69, no. 7 pp. 1033-1039 , 2020, DOI : 10.5370/KIEE.2020.69.7.1033
- Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In Proceedings of the IEEE international conference on computer vision, pp. 618-626. 2017.