DOI QR코드

DOI QR Code

Understanding Interfacial Charge Transfer Nonlinearly Boosted by Localized States Coupling in Organic Transistors

Carbon Nano Tube 및 산화그래핀을 첨가한 폴리우레아 복합재 제조 및 그 화학적 특성 분석

  • Kim, Hyeongtae (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Lee, Jihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • An, Woo-Jin (School of Mechanical Engineering, Gyeongsang National University) ;
  • Park, Jun Hong (School of Materials Science and Engineering, Gyeongsang National University)
  • 김형태 (경상국립대학교 나노신소재공학부) ;
  • 이지현 (경상국립대학교 나노신소재융합공학과) ;
  • 안우진 (경상국립대학교 기계공학부) ;
  • 박준홍 (경상국립대학교 나노신소재공학부)
  • Received : 2021.11.19
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

Polyurea has been investigated as a polymer matrix for composite materials because of its high mechanical strength. Although polyurea has a similar chemical structure to polyurethane, it has much higher strength and durability. In this study, the fabrication of polyurea composites reinforced with carbon nanotube (CNT) and graphene oxide (GO) is demonstrated to enhance the tensile strength of the glass fibers composite. Using FTIR and Raman spectroscopies, the chemical structures of polyurea, CNT, and GO are investigated. As a result, spectroscopy analysis reveals that the chemical structure of CNT, GO, and polyurea is maintained during the fabrication of the composite structure. Scanning electron microscopy reveals the uniform distribution of CNT and GO across the polyurea matrix. The reinforcement of 1 wt% CNT in polyurea enhances the tensile strength of CNT/polyurea composites. In contrast, the reinforcement of GO in polyurea induces the degradation of the tensile strength of GO/polyurea composites.

폴리우레아 소재는 폴리우레탄 화학결합과 높은 유사성을 가지고 있으면서, 높은 기계적 강성 및 탄성을 가지고 있어 경량 복합재의 고분자 기지 상으로 연구되어 왔다. 본 연구에서는 이방성을 가진 CNT (carbon nanotube)와 GO (graphene oxide)를 폴리우레아 기지 상에 첨가하여 제작한 복합재를 제작하였고 그 특성을 분석하였다. 원자힘현미경 이용해 CNT와 GO의 각각 1차원의 선형 및 2차원의 층상의 이방성을 확인한 후, 5 wt%으로 각각 폴리우레아 Resin에 혼합 후 cross-link 형성 및 건조 과정을 거쳐 복합재를 제작하였다. FTIR과 Raman 분광법을 이용해 제조한 CNT/폴리우레아와 GO/폴리우레아 복합재의 화학적 구조를 분석하였다. 그 결과, 폴리우레아와 첨가물의 화학결합 변화없이 혼합된 것이 확인되었다. 전자현미경을 이용해 첨가제/폴리우레아/유리섬유 직물 복합재의 표면과 단면에서의 CNT와 GO의 분포를 관찰하였다. 인장 강도 시험 결과, 1 wt%의 CNT와 GO가 첨가된 폴리우레아의 경우 인장강도 향상이 관측되었다.

Keywords

Acknowledgement

본 연구는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업(2021RIS-003) 과 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 결과입니다.

References

  1. J. Lee and M. Mitici, Reliability Engineering & System Safety, 202, 107052 (2020). https://doi.org/10.1016/j.ress.2020.107052
  2. H. Lee, G. Li, A. Rai and A. Chattopadhyay, Advanced Engineering Informatics, 44, 101071 (2020). https://doi.org/10.1016/j.aei.2020.101071
  3. R. Nasi, E. Honkavaara, M. Blomqvist, P. Lyytikainen-Saarenmaa, T. Hakala, N. Viljanen, T. Kantola and M. Holopainen, Urban Forestry & Urban Greening, 30, 72, 83 (2018).
  4. X. Hu, B. Pang, F. Dai and K. H. Low, IEEE Access, 8, 150162 (2020). https://doi.org/10.1109/access.2020.3016118
  5. H. Liu, M. H. C. Man and K. H. Low, Aerospace Science and Technology, 113, 106645 (2021). https://doi.org/10.1016/j.ast.2021.106645
  6. E. Vinogradov, F. Minucci and S. Pollin, IEEE Vehicular Technology Magazine, 15, 88 (2020). https://doi.org/10.1109/mvt.2020.2980014
  7. L. Zhu, X. Cheng and F.-G. Yuan, Measurement, 77, 40 (2016). https://doi.org/10.1016/j.measurement.2015.09.006
  8. C. E. Riboldi and F. Gualdoni, Aerospace Science and Technology, 58, 134 (2016). https://doi.org/10.1016/j.ast.2016.07.014
  9. H. Yan, S.-H. Yang, Y. Chen and S. A. Fahmy, IEEE Wireless Communications Letters, 10, 1410 (2021). https://doi.org/10.1109/LWC.2021.3069078
  10. K. Kang, S. Park, S. O. Cho, K. Choi and H. Ju, Fuel Cells, 14, 694 (2014). https://doi.org/10.1002/fuce.201300244
  11. A. Al-Fatlawi, K. Jarmai and G. Kovacs, Polymers, 13, 834 (2021). https://doi.org/10.3390/polym13050834
  12. M. Kaufmann, D. Zenkert and P. Wennhage, Structural and Multidisciplinary Optimization, 41, 325 (2010). https://doi.org/10.1007/s00158-009-0413-1
  13. M. Ramesh, R. Vijayanandh, G. R. Kumar, V. Mathaiyan, P. Jagadeeshwaran and M. S. Kumar, IOP Conference Series: Materials Science and Engineering 2021, 1017, 012032 (2021).
  14. G. Xian, R. Guo, C. Li and B. Hong, Journal of Materials Research and Technology, 14, 2812 (2021). https://doi.org/10.1016/j.jmrt.2021.08.088
  15. N. Karakaya, M. Papila and G. Ozkoc, Composites Part A: Applied Science and Manufacturing, 131, 105771 (2020). https://doi.org/10.1016/j.compositesa.2020.105771
  16. Y. He, Q. Chen, H. Liu, L. Zhang, D. Wu, C. Lu, W. OuYang, D. Jiang, M. Wu and J. Zhang, Macromolecular Materials and Engineering, 304, 1900166 (2019). https://doi.org/10.1002/mame.201900166
  17. H. Lee, Y. H. Kim, Y. W. Lim, J. Jang, S. M. Kang and B. S. Bae, Advanced Optical Materials, 8, 1902178 (2020). https://doi.org/10.1002/adom.201902178
  18. M. K. Idris, J. Qiu, G. W. Melenka and G. Grau, Engineering Research Express, 2, 025022 (2020). https://doi.org/10.1088/2631-8695/ab8e24
  19. J. Y. Lee and G. J. Collins, Advanced Optical Materials, 8, 1902178 (2017). https://doi.org/10.1002/adom.201902178
  20. J. C. Marx, S. J. Robbins, Z. A. Grady, F. L. Palmieri, C. J. Wohl and A. Rabiei, Applied Surface Science, 505, 144114 (2020). https://doi.org/10.1016/j.apsusc.2019.144114
  21. S. K. Das and S. Roy, IOP Conference Series: Materials Science and Engineering 2018, 402, 012077 (2018).
  22. J. Wu and D. Chung, Carbon, 40, 445 (2002). https://doi.org/10.1016/S0008-6223(01)00133-6
  23. T. Windhorst and G. Blount, Materials & Design, 18, 11 (1997). https://doi.org/10.1016/S0261-3069(97)00024-1
  24. M. Uddin, L. Le, R. Nair and R. Asmatulu, Journal of Engineering Materials and Technology, 141 (2019).
  25. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He and Z.-Z. Yu, ACS Applied Materials & Interfaces, 3, 918 (2011). https://doi.org/10.1021/am200021v
  26. S. R. Madara, N. S. Raj and C. P. Selvan, IOP Conference Series: Materials Science and Engineering 2018, 141, 012011 (2018).
  27. D. Rahmatabadi, A. Shahmirzaloo, M. Farahani, M. Tayyebi and R. Hashemi, Materials Science and Engineering: A, 753, 70 (2019). https://doi.org/10.1016/j.msea.2019.03.002
  28. D. Han, H. Mei, S. Farhan, S. Xiao, J. Xia and L. Cheng, Journal of the American Ceramic Society, 100, 2243 (2017). https://doi.org/10.1111/jace.14790
  29. Y. Shi, L. Zhao, Z. Li, Z. Li, D.-B. Xiong, Y. Su, S. Osovski and Q. Guo, Materials Science and Engineering: A, 764, 138273 (2019). https://doi.org/10.1016/j.msea.2019.138273
  30. T. Yang, D. Xie, Z. Li and H. Zhu, Materials Science and Engineering: R: Reports, 115, 1 (2017). https://doi.org/10.1016/0921-5093(89)90649-7
  31. V. Shahi, V. Alizadeh and A. V. Amirkhizi, Mechanics of Time-Dependent Materials, 25, 447 (2021). https://doi.org/10.1007/s11043-020-09454-0
  32. S. A. Tekalur, A. Shukla and K. Shivakumar, Composite Structures, 84, 271 (2008). https://doi.org/10.1016/j.compstruct.2007.08.008
  33. D. Mohotti, T. Ngo, S. N. Raman, M. Ali and P. Mendis, Materials & Design (1980-2015), 56, 696 (2014). https://doi.org/10.1016/j.matdes.2013.11.063
  34. L. Xue, W. Mock Jr and T. Belytschko, Mechanics of Materials, 42, 981 (2010). https://doi.org/10.1016/j.mechmat.2010.08.004
  35. J. Fang, A. Kelarakis, D. Wang, E. P. Giannelis, J. A. Finlay, M. E. Callow and J. A. Callow, Polymer, 51, 2636 (2010). https://doi.org/10.1016/j.polymer.2010.04.024
  36. A. Mikhalchan, A. M. Banas, K. Banas, A. M. Borkowska, M. Nowakowski, M. B. Breese, W. M. Kwiatek, C. Paluszkiewicz and T. E. Tay, Chemistry of Materials, 30, 1856 (2018). https://doi.org/10.1021/acs.chemmater.7b04065
  37. M. Mrukiewicz, K. Kowiorski, P. Perkowski, R. Mazur and M. Djas, Beilstein Journal of Nanotechnology, 10, 71 (2019). https://doi.org/10.3762/bjnano.10.7
  38. P.-C. Ma, S.-Y. Mo, B.-Z. Tang and J.-K. Kim, Carbon, 48, 1824 (2010). https://doi.org/10.1016/j.carbon.2010.01.028
  39. T. Arunkumar and S. Ramachandran, International Journal of Ambient Energy, 38, 781 (2017). https://doi.org/10.1080/01430750.2016.1222966
  40. N. Iqbal, P. Sharma, D. Kumar and P. Roy, Construction and Building Materials, 175, 682 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.204
  41. S. Do, J. Canilao, S. Stepp and G. Youssef, Polymer Bulletin, 1 (2021).
  42. N. Iqbal, M. Tripathi, S. Parthasarathy, D. Kumar and P. Roy, Progress in Organic Coatings, 123, 201 (2018). https://doi.org/10.1016/j.porgcoat.2018.07.005
  43. X. Qian, L. Song, Q. Tai, Y. Hu and R. K. Yuen, Composites Science and Technology, 74, 228 (2013). https://doi.org/10.1016/j.compscitech.2012.11.018
  44. M. Wortmann, N. Frese, A. Heide, J. Brikmann, O. Strube, R. Dalpke, A. Golzhauser, E. Moritzer and B. Husgen, Polymer-Plastics Technology and Engineering, 57, 1524 (2018). https://doi.org/10.1080/03602559.2017.1410838
  45. T. Liu, H. Zhao, F. Mao and J. Li, Materials Research Express, 6, 125619 (2019). https://doi.org/10.1088/2053-1591/ab5d48
  46. M. Gonzalez-Durruthy, L. C. Alberici, C. Curti, Z. Naal, D. T. Atique-Sawazaki, J. M. Vazquez-Naya, H. Gonzalez-Diaz and C. R. Munteanu, Journal of Chemical Information and Modeling, 57, 1029 (2017). https://doi.org/10.1021/acs.jcim.6b00458
  47. K. Deng, J. Zhou and X. Li, Electrochimica Acta, 95, 18 (2013). https://doi.org/10.1016/j.electacta.2013.02.009
  48. K. K. H. De Silva, H.-H. Huang and M. Yoshimura, Applied Surface Science, 447, 338 (2018). https://doi.org/10.1016/j.apsusc.2018.03.243
  49. K. Zhu, C. Jiang, Z. Li, L. Du, Y. Zhao, Z. Chai, L. Wang and M. Chen, Materials & Design, 107, 333 (2016). https://doi.org/10.1016/j.matdes.2016.06.030
  50. M. Aqeel, S. Anjum, M. Imran, M. Ikram, H. Majeed, M. Naz, S. Ali and M. Ahmad, Materials Research Express, 6, 086215 (2019). https://doi.org/10.1088/2053-1591/ab244a
  51. K.-Q. Deng, J.-h. Zhou and X.-F. Li, Colloids and Surfaces B: Biointerfaces, 101, 183 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.007
  52. S. K. Basu, L. Scriven, L. Francis and A. McCormick, Progress in Organic Coatings, 53, 1 (2005). https://doi.org/10.1016/j.porgcoat.2004.08.007
  53. M. Shimokawa, H. Yoshida, T. Komatsu, R. Omachi and K. Kudo, Gels, 4, 41 (2018). https://doi.org/10.3390/gels4020041
  54. B. S. Hadavand, M. Pishvaei and M. Hosseininiasari, Progress in Organic Coatings, 131, 60 (2019). https://doi.org/10.1016/j.porgcoat.2019.02.024
  55. W. Zheng, W. Chen, S. Ren and Y. Fu, Polymer, 163, 171 (2019). https://doi.org/10.1016/j.polymer.2018.12.055
  56. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A. W. Van Vuure, S. V. Lomov and I. Verpoest, Composites Science and Technology, 70, 1346 (2010). https://doi.org/10.1016/j.compscitech.2010.04.010